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MAINTENANCE POLICIES FOR
STOCHASTICALLY FAILING EQUIPMENT

Michael Q. Anderson

Robert O. Anderson Schools of Management
University of New Mexico
Albuquerque, New Mexico

ABSTRACT

This paper examines various models for maintenance of a machine operating subject
to stochastic deterioration. Three alternative models are presented for the deterioration
process. For each model, in addition to the replacement decision, the option exists of
performing preventive maintenance. The effect of this maintenance is to "slow” the
deterioration process. With an appropriate reward structure imposed on the processes,
the models are formulated as continuous time Markov decision processes, the optimality
criterion being the maximization of expected discounted reward earned over an infinite
time horizon. For each model conditions are presented under which the optimal mainte-
nance policy exhibits the following monotonic structure. First, there exists a control limit
rule for replacement. That is, there exists a number i* such that if the state of machine
deterioration exceeds i* the optimal policy replaces the machine by a new machine.
Secondly, prior to replacement the optimal leve! of preventive maintenance is a nonin-
creasing function of the state of machine deterioration. The conditions which guarantee
this result have a cost/benefit interpretation.

INTRODUCTION

There is a substantially large collection of papers in the machine repair/main-
tenance/replacement literature. Two fairly comprehensive surveys are McCall [22] and Pier-
skalla and Voelker [23]). Specific articles of interest are Barlow and Proschan (4], Derman (8],
[9], (10}, Klein [17], Kolesar (18], Kalymon [15], Thompson [29], Kamien and Schwartz (16],
Ross [25], and Rosenfield [24]. An interesting semi-Markovian treatment of shock models is
given by Feldman {11]. The focus of these models has been on the replacement decision. In
such models, gradual operating deterioration (or "wearing out") is not subject to control. The
model in [16] differs somewhat in that preventive maintenance can be applied to decrease the
failure probability over time.

In this paper we formulate three machine maintenance models that in addition to the
replacement decision, incorporate the option of performing preventive maintenance. The effect
of the maintenance is to "siow” the rate of machine deterioration. Each model presents a
different version of the nature by which maintenance action affects the deterioration process.

For each model conditions are given under which an optimal maintenance policy exhibits
the following monotonic structure:
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348 M. Q. ANDERSON

1. Control limit rule for replacement. There exists 0 £ i* < +oo such that when the state
of the machine i 2 i* the machine is to be replaced.

2. Decreasing preventive maintenance. For 0 < i < i* denote an optimal maintenance
fevel by a*(/). Then a*is a nonincreasing function of i (Compare to [16].)

The technique employed to obtain the above results first involves transforming the con-
tinuous time Markov decision process (CTMDP) to an equivalent discrete time Markov process
(DTMDP). The infinite horizon problem will then be approached via the associated finite hor-
izon discrete time process, thus permitting induction arguments on the "n-period” return func-
tions. We then use the fact that the n-period return converges to the infinite horizon return
function (see Bertsekas [5], Denardo [7), Ross [26]). This technique has been successfully
employed by others, notably Lippman [19], [20] in queueing optimization.

Papers which focus on other aspects of optimal control of the machine maintenance/repair
problem are Albright (11, Crabill {6], Goheen {121, and Winston [32], [33].

MODEL DESCRIPTION —MODEL 1

We consider a machine operating over an infinite time horizon. The state of the machine
is represented by i € S =S, U {f}, where S;=(0,1,2, ...}. State zero represents a new
machine, state fa failed machine, and increasing integer state values represent increasing stages
of machine deterioration.

The action space is denoted by 4 and consists of triples (a;, a;, a;) € R’ and is defined
as follows: a3;=0 or 1 according to whether the machine is not or is replaced by a new
machine. If a machine in state i is replaced by a new machine, the transition i — 0 takes place
instantaneously. When a3 = 0, the transition i — i + 1 occurs at (exponential) rate A\, (i, a;)
and the transition to failure i — f occurs at rate A ((i, a;). The term "rate" is used here in the
usual sense, see Ross [26). For example, let p;,,, (a;) be the transition probability for the
transition i — i + 1 given action @, and suppose the transition time probability out of state iis
exponential with mean 1/A(i, a;). Then A\(i, a,) = A(i, a})p,,+, (a;). Finally, if the machine
is in the failed state, it must be immediately replaced (a; =1 when /= f). a, and a, are
viewed as maintenance actions in a sense to be made precise below.

The reward structure is specified as follows. A lump sum cost C is incurred when the
machine is replaced by a new machine. If the machine fails while in service a lump sum cost
F 2 C is incurred for replacement. If the state is i € S;, the machine earns revenue at rate
r(i, @) per unit time, a = (a,, a,, 0). The optimality criterion is the maximization of
expected discounted revenue earned over an infinite time horizon. For the continuous
discounting of cash flows denote the discount factor by @ € (0, 1).

Notation and Definitions. For a real-valued function g defined on the nonnegative integers,
let Ag(i)=g(i) ~g(i~1),i>1,and A%g() =~ g(i) —2g(i— 1) + g(i — 2), i > 2. Thus,
g is nonincreasing (nondecreasing) iff Ag(i) € 0 (> 0) and convex (concave) iff A2g(i) = 0
(£0).

Let f be a real-valued function defined on C x D € R". fis supermodular (submodular)
on D if for d], dz € D, f(C, d| - dz) + f(d, d| v d)) 2 (Q)f(c. d]) + f(d. dz), where -
denotes component-wise minimum and - denotes component-wise maximum. f has antitone
(isotone) differences on C x Dif for ¢; € ¢, and d, < dj,
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A

f(('l, dz) - f((’|, d\) ? (g)f(('b dz) "f((‘z, d().

A

Let A'= A4 — {a € Ala; = 1].

Define A = sup {2x,(i, @) + A, a)).

We make the following assumptions for Model 1:

o (A1) A < +0o

(A2) A is a compact sublattice of R? (under the usual partial ordering and relative topol-
' ogy).

i
' (A3) r is nonincreasing convex in i, nonincreasing in (a;. a;, 0) € A4 and has antitone
differences on Sp X A'. Also, r 2 0.

(A4) A, and A, are each nondecreasing concave in i and nonincreasing on 4'. A, has iso-
tone differences in (i, a,) and A isotone differences in (i, a;).

(AS) Ay, Ay, and r are each continuous on A4'.

REMARKS: Given state i and action a,, the probability that the machine will fail in a
small time dris A,(i, a,)dr. In this sense we think of A as a failure rate function. Similarly,
A, is a measure of the tendency of the machine to "wear out.” The fact that the rates A, and A,
.. ' are nondecreasing in i will play a major role in establishing a control limit rule for replacement
S (compare to Derman’s IFR conditions {8]). The monotonicity of A, and A, in (a;, a; 0)
s makes precise the notion of viewing the action as "preventive maintenance.”

The concavity assumptions on A; and A, can be given the interpretation that when the
machine is new there is a strong tendency for wear-out and failure to increase sharply. As the
machine breaks in, this rate of increase declines. This concavity assumption is used to prove

the optimality of decreasing preventive maintenance.

USRI S

+

Y

From (A3), letting b > awe have r(i + 1, a) — r(i + 1,6) 2 r(i, a) — r(i b) which
says that increasing the level of maintenance from g to b incurs a greater cost increase in state
i 4+ 1 than in state i Not only does the cost increase but the benefit decreases since from (A4)
MG+, ) = MG +1, b)) < 0, a) — £, ) (and similarly for A /).

THEOREM 1. There exists an optimal stationary policy for Model 1.

PROOF: Note that from (A2), (A3), and (AS) the reward function is bounded. It is
then trivial to verify that the conditions specified in [7] are satisfied. (The functional operator
H, defined in that paper turns out to be a two stage contraction due to the possibility of instan-
taneous transitions i — 0. For unbounded return functions see Lippman [21].)

N

Poomo T w el v

Functional Equations

Using the method described in Lippman [19] (see aiso Kakumanu ([14], Serfozo [28],
Winston [32], Howard [13], Anderson [2]) we can transform the continuous time process to an
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equivalent discrete time Markov decision process (DTMDP). Denote the optimal return func-
tion for the n-period horizon in the DTMDP by V,,, n € 400,

Then
1) Vo(i) =0

and for n 2 1,

Max {T,(C, 0), T,(D} i#f
(2) v,(i) = T,(F, 0) i=f
For x € (C, Fl.
To(x, 0O=0

andforn 2 1,
3) T,(x, 0) = Mea}g {r(0, @) — x(a + 7,0, a) + 1,0, a)))
+ M(O. a|)V _|(1) + )\_,(0. 02) T,,_l(F, 0)
+ (A =270, a) = A0, @)V, ;O QA +a)
Told) =0
T,(i) = 1:435 JG, a, V,_)/(A +a)
4) JG a V)=l @) + 700G a) Vi + N+
A ay) T, \(F, 0) +
(A = MGoa) = A a) Vo (D).

(For n = +oo we write V= V, T = T). Equations (2) assume that a failed machine must
be replaced. The presence of the lump sum rewards —C and —F requires special consideration
in the discrete time recursions resulting in their somewhat complicated appearance involving
the functions T,. For a discussion on the treatment of lump sum rewards see Serfozo 128} or
Anderson [2]. In (2), T,(C, 0) is the return if the replacement action is chosen, T,(F, 0) is
the return if an in service failure occurs, and T, (i) is the return otherwise.

We denote the optimal action in state i by a*(i, n) and resolve ties in (3) by defining
a*(in) = infla € A'VJG, a, V,.) = Mea} J(, a, V,_))] which is well-defined since J is con-
a

tinuous on A’ and A is compact.
Finally, if a tie occurs in (2) we define V,(i) = T,0).
LEMMA 1: For 0 € n < +o0 and i € Sg, T,(F, 0) € V, ().
PROOF: Equation (2) implies V,(i) 2 T,(C, 0) > T,(F, 0)since F 3 C. o’

LEMMA 2: For 0 € n € +oo, ¥, is nonincreasing ini €8,

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28. NO. ), SEPTEMBER 1981
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PREVENTIVE MAINTENANCE POLICIES FOR STOCHASTICALLY FAILING EQUIPMENT 351

PROOF: We prove the lemma for finite » (by induction). The infinite horizon case fol-
lows by taking limits (V, — V). For n = 0 the result is trivial. For n > 0 it suffices to show
that AT,(i) < 0. Define a = a*(i) = (a,,a;, 0). From (3), (4), and the definition of a,

(5) A+) [T, -T(i-M<JGa V,.)=-J(i—1,a V,)
LAV, G+ DMG oay)
+ AV, (VA = NG~ a, a) = A (i =1, a))]
(6) <0

Inequality (5) follows from A (i, a3) 2 A,(i ~ 1, a3) and 7,_(F, 0) — V,_;(i) £ 0 (Lemma
1). Inequality (6) follows from the definition of A and the inductive hypothesis. a

THEOREM 2 (Control limit rule for replacement): There exists i*, 0 € i* € +oo, such
that for i > i*, a3(i) = 1 (i.e., the optimal action is replacement).

PROOF: From (2) it suffices to show that T is nonincreasing on Sy. In the proof of
Lemma 2 we showed that AT,(i) < 0 for finite n. Using AV (i) £ 0 (Lemma 2), the proof
that AT, (i) < 0 holds in the same way for n = +eo. Now set i* = mfh T(C, 0) > T()).

In order to establish the optimality of nonincreasing preventive maintenance we first need the
following femma.

LEMMA 3: For 0 € n € +oo, V, is convex in i

PROOF: The convexity of ¥ will follow from that of V,(n < +o0) by taking limits on n.
For n < 4+ we employ induction. Since the maximum of convex functions is convex, from
(2) it suffices to show that T, is convex. Since ¥y = 0 the convexity of Vj is trivial. Assume
then that V,_, is convex. To show that T, (and, therefore, V,) is convex we need A’T, (i) =
(r,() -7, - 1) - (T(l-l)—T(l-—2)) 2z 0, 1> 2.  Define a-a'(:—l
n) = (a;, a;,0). From (3) we have

¢)) A+)IT,D-T(i-DI2JGa V,_)-Jl~-1,a V, )
8) A+)IT,G-D-T,G=-D1<J(i~-1,a V,-)=JGi=2, a V,_.

From (7) and (8) in order to establish A27,(i) 2> 0 it suffices to prove that AW (i, a) =
JG, a, V,.)=2Ili=1,a V,_)+J(i-2,a V,)) 20

From (4),

) AU, a) = r(ia) = 2r(i=1, @) +r(i—2, a)

(10 + M0 ap) VoG + D)

an +AV, (DA = 20— 1, ay)]

12) +AV,_i—=DI-A+0NG=-2, a)l

(13) + T, (F 0) NG ap) ~ 2, (i = 1, a)) + A ,(i = 2, ay)]

(14) + V(D) =20, ay)
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352 M. Q. ANDERSON
(i5) + Voali=D 2,6 -1, a))]
(16) + Vi = 2) [=a /i = 2, a)))

Consider the last four terms of the above sum ((13)-(16)). From Lemma 1, 7, (F, 0) <
V,_,(i — 1) and using the concavity of A, we see that the sum of (13)-(16) is greater than or
equal to

an AV, [ (DA, G adl + Vo= D NG = 2, a)))

Replacing (13)-(16) by (17), using the convexity of r, the definition of A and the induction
hypothesis that ¥,_, is convex (AV,_(i) = AV, (i — 1)), we see that

AUG a) Z AV, =D NG a) = 206G =1, a) + 06 —2, a)
+ A, =2, a) = Afli, a)))
20

where the last inequality follows from the concavity of A, and the monotonicity of A ,. 0

THEOREM 3: Prior to replacement, the optimal preventive maintenance level is a nonin-
creasing function of i, i.e., for 0 < i < i*, a*(i) 2 a*(i +1).

PROOF: From Theorem 6.2 of [30] and assumption (A2) it suffices to show that (1) for
each i, J is supermodular in @ € A’ and (2) J has antitone differences on 4’ x §;. (1) follows
from the supermodularity of 7 and the fact that J ~ r is a separable function of a, and a,.

Let @ = (a;, ay, 0) < b= (b, by, 0) € A'. Define &,,, =JGi+1, b V)+J( a V) -
JG+1,a V)=-JG b V).

Then,
(18) Agp=rli+1, 0 +rli, a)=rGi+1,a)—r b)
(19) +AVG+D NG+, B) = NG+ 1, a))
(20) +AVG+ D ING a) =2 G b))
Qn +(T(F,O-VG+ DG +1, 8 = rli +1, a))]
(22 + (T(F, 0) = V(D) NG, ay) ~ A G, b))
(23a) SAVG+HDINGHTY, b)) = NG+ 1, a) + MG ay) = 0GB
(23b) +(T(FO - VG+ DI G+1, 8) —r i+, ay)
+ A0, ay) = A byl
(24) £0

The inequality yielding (23a) and (23b) results from the following: From (A3), summand (18)
is nonpositive; use the convexity of ¥ and the fact that A; is nonincreasing on A’ to obtain
(23a) from (19) and (20). Now use Lemma 2 and the fact that A, is nonincreasing on A’ to
obtain (23b) from (21) and (22).

Inequality (24) follows using Lemma 1, and assumption (A4) that A, and A, have isotone
differences.

O
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This completes the specification of the structure of the optimal maintenance/replacement
policy for Model 1. Note that the results hold for the special cases A , = 0, or A} = 0. Also
observe that from (4), J(G, a, V)= r(i, a) + M(i, aDAV(i+ 1)+ A, a)) (T(F, 0) ~
V(i)) + AV{i). Thus, if ris convex in a, and A | and A , are concave in a, J will be convex in
a. (Recall Lemmas 1 and 2.) In this case, 4* is a bang-bang policy for i € Sy
a*=supla € 4’} or a*=inf {a € 4'}. (4' is compact by assumption (A2).) A, concave
nonincreasing in g, means that small increments in @, above inf 4' have little effect in decreas-
. ing A; (and similarly for a, and A ;). However, r convex nonincreasing in a implies that the
‘ increase in cost for such an increment is great. Whether a*(0) = sup 4’ or a*(0) = inf A’ will

i depend on how effective preventive maintenance is against protecting the new machine relative
to the cost of the machine.

4

MACHINE MAINTENANCE — MODEL 2

structure, and optimality criterion. However, Model 2 differs in the nature of machine
deterioration. Preventive maintenance is represented by a pair a = (a), a,,0) € 4 € R>.
. The transition i — f (failure) occurs at rate A (i, ;). Also, the machine may deteriorate to
“ state i + j from state fat rate A (j, a,), j € {1.2. ...].

]
!

j The specification of Model 2 is identical to Model 1 regarding the state space, reward
i

Suppose the previous assumptions in Model 1 on A4, r and A, hold here. In addition, we
i assume that A (j, *) is nonincreasing and continuous on A’ for j € S,. Also, assume that A =
‘ sup {Er(, a;) + A ,(i, a;)} < +oo. Then routine application of the techniques used for Model
1 establishes that the optimal maintenance/replacement policy for Model 2 exhibits the same
' monotonic structure. Since the proofs are completely straightforward we omit the details.

4!

MACHINE MAINTENANCE—-MODEL 3

Again Model 3 differs from Model 1 only in the nature of the deterioration process.

Specifically, denote an action by @ = (a,, a,, a;) € 4 € R? a;=1 indicates replacement as

before. Suppose a; = 0. Then failure i — foccurs at rate A (i, a;) as before. In addition the

machine may also deteriorate from state jto a state i + m(i, a;, p) at rate AdF(p). Here pisa

random variable taking values 1n & set P and having distribution /. Let Z denote the set of

integers. Then mis amap m: Sogx A x P — Z. We think of p € P as a measure of the mag-

nitude of a randomly occuring shock. The time between shocks is exponential with mean 1/A.

. The three variables i, a,, and p together determine the subsequent "damage” m(i. a, p) to the
machine.

o -l

)

« e N
v L".:Jh-r_"r.‘

We make the following assumptions:

(B A =sup (A,(i, a)} + A < +oo
(B2), (B3) same as (A2) and (A3), respectively.

(B4) The conditions on A ; are the same as stated in (A4).

(BS) The function m is nonincreasing in a; ('preventive maintenance”), is nondecreasing
in i € So, and has isotone differences on Sy x 4.
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(B6) m, A, and r are each continuous on 4.

.»'_.-‘.u..-_ .——c_ --.:.'.

. 2

These assumptions are to be interpreted in a manner similar to the discusssion following

. (A1)-(AS) of Model 1. 1
It is easy to establish Theorem 1 for Model 3. We now present the recursions for the
" present model.
Recursions for Model 3 *

The DTMDP recursions equivalent to the CTMDP are the following:
(29) Vo) =0
and for 1 € n € +oo,

' Max{T,(C,0), T,()} i=f
(26) V,,(l) - Tn(’:- 0) = f
For x € {C, F},
TQ(X. 0=0
andforn 2> 1, with4'= A — [a € Ala; =0}, |
T,(x, 0) = M&x {r(0, @) — x(a + X + 70, ay))
+A f, Voo (m©, ay, pYAF(p) + 2,0, a) T, \(F, 0) l
+ (A =X =20, ay)) Vo, 0/ (A +a)
To(i) =0
° ]
forn 2 1,
Qn T,(i) = Mea}g JG a V,_)/(A +a) 1
(28) JG a Vo) =rli @)+ f Voo i+ mG, ay, p)) dF(p)

+a,(i, a)) T,_(F, 0)
+ (A =x=r;0, a)) V(D)

As before for n = +o0 we writ¢ V.=V and T, =T, and a*(i n) denotes the optimal
maintenance action in state i

LEMMA 4: For0 £ n € +oc and i € S,
T, (F, 0) £ V,(i).
PROOF: The proof is similar to the proof of Lemma 1. O

LEMMA 5: For 0 € n £ +o0, V, is nonincreasing in i € S,.
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PREVENTIVE MAINTENANCE POLICIES FOR STOCHASTICALLY FAILING EQUIPMENT 35§

PROOF: As before, the infinite horizon case will follow from the finite horizon result.
The result is trivial for n = 0 since V; = 0. Assume AV,_,(i) < 0 for i € S;. From (26) it
suffices to show AT, (i) € 0. Leta = a*(i, n) = (ay, a,, 0) € 4’

From (27),
(29) AT,() € JG a, V,.) = JGi—1, a, V,_))
= Ar(i, a)
+A Voo G+ m ay, p)) = Vo li= 1+ mli = 1, ay, p)) dF(p)
+ 70, a) [T, \(F, 0) = V,_,(i — D]
=i =1, a) (T, ((F, 0) = V,_, (i — D]
+ (A =NAV,. ()
Ar(i, @) +
Apf VooiGi + mGi, ay, p)) = Voo rti = 1+ m(i — 1, ay, p))1dF(p)
+ (A - NAV,. (D)
30) <£0.

Inequality (29) follows from Lemma 4 and the monotonicity of A, in i To obtain the last ine-
quality, (30), use (A3) on r, (BS) on M, and the induction hypothesis that V,_, is nonincreas-
ing, along with the definition of A. )

THEOREM 4 (Control limit rule for replacement): There exists i*, 0 € i* € +co such
that for i 2 i*,a3(i) = 1 (replacement).

PROOF: The proof is similar to the proof of Theorem 2.
LEMMA 6: For0 < n € +o0, ¥, is convex in i

PROOF: As in Lemma 3, it suffices to show that T, is convex. Vo = 0 so assume that
_yisconvex. Leta = a*(i — 1, n) = (a,, a,, 0) and

A2JG, a)=J a Vo)~ UG-, a V,.)+Ji~2 a V, ).

4

n

From (27),
AT, (i) 2 AV, a)
31) = A2r(i, @)

+ A f,, ,_,G+mG ay, p))—-2V,_(i—1+m(i-1, a, p))
32) +V,_(i—=2+ m(i—2, ay, p)] dF (p)
(33) + A0, a)) T,_((F, 0)
(34) + Vo (DA = & = A0, a)))
(35) + Vo i= D20+ 20+ 6 = 1, ay)]
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(36) + V0 G=2DA-a=r,G~2 a)l)

From (B3), A%r(i, a) > 0. Define my=i+ m(i a, p).my=i~1+m(i-1, a;, p), and
m=i—-2+m(i—2, a, p). From (B5) my = m, 2 m, and m concave in i =% my—
m; < m; — m,. Since V,_, is convex (the inductive hypothesis) and nonincreasing (Lemma
S), V,_,(my) = V,_,(m) = V,_,(m)) — V,_,(m,) which establishes that the integrand in (32)
is nonnegative,

Finally, the proof that the sum of the last four terms (33)-(36) is nonnegative is the same
as in Lemma 3. Thus, A%J(i, a) 2 0. ] -

THEOREM 5: Prior to replacement the optimal preventive maintenance level is a nonin-
creasing function of i

PROOF: As in the proof of Theorem 3 it suffices to show that (1) for each ¢, Jis super-
modular in @ € 4’ and (2) J has antitone differences on 4’ x Sg. (1) follows as before. To
establish antitone differences we first invoke (B3) on r. Also, the proof that J has antitone
differences in i and a, is the same as in Theorem 3. It thus suffices to prove that the integrand
in (28) exhibits antitone differences in i and a;. Let a, < b,. Define
m=i+1+mG+1,b,p), m=i+1+ mG+1,a,p), m=i+m( b, p), and
my= i+ m( a,, p). From (BS) m < my, m<m, m<m my< m, Define
gli a)) =V +m(i a;. p)). Then

lgGi+1, b)—gli+1, a)l-lgli b) —glii a)]
= [V(ml) - V(m;)] - (V("h) - V(m4)] < 0.

The inequality follows from the fact that V is nonincreasing convex and the fact that
my — m; € my — my (namely (BS) which assumes that m has isotone differences in (i, a)).
This completes the proof. 0
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ABSTRACT

A new bivariate negative binomial distribution is derived by convoluting an existing
- bivariate geometric distribution: the probability function has six parameters and admits of
’ ‘.] positive or negative correlfations and linear or nonlinear regressions. Given are the mo-

i ments 1o order (wo and. for special cases, the regression function and a recursive formula
! for the probabitities. Purely numerical procedures are utilized in obtaining maximum
likelihood estimates of the parameters. A data set with a nonlinear empirical regression
function and another with negative sample correlation coefficient are discussed.

ah 1. INTRODUCTION

: In this paper we develop a new bivariate negative binomial (bnb) distribution by convolv-
ing a certain bivariate geometric distribution. The univariate negative binomial with parameters

k
» v > 0 and ® > 0 is defined (Johnson and Kotz [6]) as the distribution of a random variable
: 5 (r.v.) X for which
,a ()] x + 1 x
M e Fx +w) 1 (4 X Ty = 1 9 -
= Pl =x1= 26y |T+e) [T+ x J|Tve) |T¥e) *7O 2
x+v -1
where x shall be taken to be defined as the ratio of gamma functions; the charac-
teristic function is
Ele™) = [1 +0(1 - e},

The mean and variance of X are v8 and v8 (1 +8), respectively. For v = 1 we have the
geometric distribution. We shall find it more convenient to use probability generating functions
than characteristic functions because of the discrete nature of the random variables we consider.
The correspondence between characteristic functions and probability generating functions is
effected by letting « = ¢ which gives

*This research was performed when the author was affiliated with the United States Air Force Academy. Colorado
Springs, Colorado.
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360 C. R.MITCHELL AND A.S. PAULSON
(2) d(uw)= Elu*l=11+060 - ).

Another common representation is to let 8 = p/(1 — p), or equivalently, p = /(1 +6),
in (1) and so

IF'ix +v) v o x -
3) Pr[X=x]=W(l—p)p. x=01, 2
(4) ¢(u)=[l—'—ﬂ -1+ -2 (l—u)]
1—-»p 1—p

This latter representation is referred to as a negative binomial distribution with parameters v
and p. We use both representations throughout.

The probability function of a bnb distribution (Mardia [9]) (or negative multinomial
(Johnson and Kotz, [6]) is
F'ix+y+v)

xy T @)

where v > 0, p=0/1+ @+ 1W], g=ap, 0< p<1,0<g<1l,and 0< p+gqg <1
The probability generating function is
(6) du, VIi=ElutvI=01+0(0—-u)+ad (1 - V],
Guldberg [S] introduced this distribution and Bates and Neyman [3] fitted it to several data

sets. We designate this bnb distribution as G — B ~ N{a, 6, v). The distribution admits only
of positive correlation and linear regressions.

(5 PriXx=x Y=yl= (l—p—gqVpq'. x,. y=0,1 2, ...

Certain data sets do not exhibit empirical regressions which are linear nor do some data
sets show positive correlation and so it is natural, for these cases, to work with a bivariate pro-
bability function which allows for nonlinear regressions or negative correlations or both. The
classical Bates and Neyman paper exhibited empirical data which would seemingly be best fit by
regression curves which were obviously nonlinear, and, consequently, their results were not
entirely satisfactory. Furthermore, in Table 3 we provide some new bivariate data related to
aircraft flight aborts which has a negative sample correlation coefficient. We would thus be
reluctant to use a bivariate distribution which did not admit of the possibility of both negative
correlation and nonlinear regressions to describe the observed abort phenomenon. These few
instances (and several others we do not provide) indicate there is a need for a study of the pro-
perties and potentialities of new multivariate negative binomial distributions which provide for
more flexibility than those which have heretofore been discussed in the literature. We also iso-
late some situations which call for even more general distributions than we consider herein.
Before we perform the data analysis we discuss an inventory model which generates the new
distributions and examine the resulting distributions in some detail.

2. A STORAGE MODEL

Consider the storage system consisting of two facilities, one of which is used to store
commodity A alone, the other to store commodity B alone. At each epoch of time,
n= 1,2, ..., facility 1 receives a random amount of commodity A4, say a,, and facility 8
receives a random amount of commodity B, say b,. Take the a, and b, to be mutually
independent, identically distributed random variables. Let the total of 4 and 8 at epoch n be
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A, and B,. The total 4, and B, are related to the totals A4,_, and B,_, in the following
fashion. Between epoch #n — 1| and » the totals 4,_; and B,_; may randomly be reduced to
zero or remain intact. The manner in which 4,_, and 8,_, are carried over to the nth epoch
determines storage characteristics. The system equations are

A= a, +&, A,
B,=b,+¢, B,-\.
and without loss of generality we take 49 = By = 0. There are four cases of interest:
m Pr,={,=0)=a
Pr¢,=¢{,=l)=d=1-a

am Pr¢,=0¢,=0=a
Pr€,=1,.0,=0)=0b
Pr¢,=1.0,=)=d=1-a— b

() Pr¢,=0,(,=0=a
Pr¢,=0¢,=1)=c¢
Pr¢,=1.{,=1)=d=1-a~c

av) Pr¢,=0¢,=0=a
Pr¢,=1(,=0=0b
Pr¢,=0,({,=D=—¢
Pr¢¢,=1,¢{,=1l)=d=1—-a-b-rc

For example, (I) implies that the contents of facilities 4 and B are either both discharged or
both kept in the time between epoch n — 1 and n. (II) implies that the contents of both are
simultaneously discharged with probability a; the contents of B is discharged while those of 4
are kept with probability &, and the contents of both 4 and B are kept with probability d.
Finally, take both a, and b, to be geometric. Provided b + d < 1, ¢ + d < 1, the system
defined by the above system equations soon reaches steady state and is governed by a bivariate
geometric probability distribution (Paulson and Uppuluri, {11]1). If there are m identical sys-
tems of this type and the quantities 4 and B are summed across the m systems, a bivariate
negative binomial distribution results. Curiously, cases (I}, (II}, and (I1I) give rise to infinitely
divisible bivariate distributions (as we show iater) whereas (IV) does not in general The
analytical details, starting from the steady state system whose behavior is defined by a func-
tional equation in the probability generating function, are given in the next section.

3. THE NEW BIVARIATE NEGATIVE BINOMIAL DISTRIBUTION AND PROPER-
TIES

Paulson and Uppuluri {I1] showed that the bivariate r.v. (X, V) (identify X and Y with
the steady state 4, and B,, respectively), where each element in the pair is defined on the non-
negative integers, has a bivariate geometric distribution if its probability generating function,
¢ (i, v), satisfies the functional equation
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%)) d(u V) =y (u, DY,(1, vI(a + bd(u, 1)+ cd (1, v) + dé(u, v))
where

-1
Uiu, D)= 1+‘—§;(1- u)l :

-1
(1, v) = 1+T—_9—q(1-v)| :

and a, b, ¢, d are all nonnegative quantities witha + b+ c+d=1, b+d < l,c+d <1,
and 0 < p < 1,0 < g < 1. It is easy to show from (7) that

(8a) du, D= (1+6,(1-u)",

(8b) (1, V= (1+6,(1 - v},

with

(8¢) 8,=p/{(1~p)la+c))0,=q/l(01~g)(a+ b))

We thus see that the marginals are geometric. Paulson and Uppuluri obtained the moments of
(X, V) in (7) 1o order two and showed that the correlation coefficient p varies over —.25
< p < 1; they also presented recursive formulae for determining the probability function.

Consider the case b = ¢ = 0 in (7). We have (suppressing the arguments of ¢ (1, 1) to
givew | = ¢ (u, 1) and similarly for ¢ ;)

9) & (u, V) =y g, ((1 — d) + dé (u, v))
_U-dWw,
1~ déw,
10) = (-, +dbg,+dvpi+. ..

The inverse transform of & (u, v), the probabdility function g;(x. »), say, may be obtained
termwise from (10) since the resultant series converges uniformly and absolutely for all
x, v=20,1,2, ... (Titchmarsh, [12]). We obtain

2 ]1x+Aly+J 4
an gilx, )= A= =-ppl-g)¢" L | | I y ‘ d-p) Q- @V,
=0
where x, y = 0, 1, 2, ... . Expansion of the combinatoric terms in (11) gives
(12) 81x, )= U-d)A~plprl — @)’ F(x +1, y + 1;1;d(0 = p) (1 - ¢g)),
where F(a, b;c;z) is the Gaussian hypergeometric series given by
= (a),(b);, ;i
L Ch - + —’__’ _Z__'
(13) F(a, b.c.z) =1 g‘ @,
and the term (n); is defined by
I'(n +j) .
(n),= =nn+1)...(n+j—-1).
I'(n)
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It can be shown that Theorem 12.2.3 of Lukacs [8] can be appropriately extended to yield
the result that ¢ (u, v) is infinitely divisible, or equivalently, g,(x. y) is infinitely divisible (see
also Block, Paulson, and Kohberger [4].

Thus, the »-fold convolution of g,(x, y) with itself yields a bnb distribution which we
designate g, (x, ¥) where v need not be restricted to integer values. The probability generating
function ¢, (u, v) of g, (x. y) is

(14) &, (u, vVI=(0~-dNy)) (0~ dp )™
vip +1)

= ((1~-dWgr(0+vdbg,+ 3 (@) +...)
which gives in the same manner as above
(15) g(x, y)= (1 —dVh(x)h, () Fix +v,y +viv,z),
where
v+x-—1
hy(x) = l x (1~ py p*
v+y—1
hy(y) = l y 1~gq) ¢

z=d(1 - p) (- gq)

and x, y= 0, 1, 2, .... Itis clear by construction that the marginals of g, (x, y), say gy, (x)
and g,, (v), are negative binomial with 6, = p/(a(1 — p)) and 8,= ¢/(a(l — q)) as may be
determined from (8) with b = ¢ = 0.

The infinite divisibility of g, (x, y) is a result of considerable appeal in applications since v
need not be restricted to integer values.

We remark in passing that the distribution (15) is the discrete analogue to the Wicksell-
Kibble bivariate gamma distribution. The k-variate extension may be readily derived as above
and has probability distribution (in obvious notation)

k
g (xpxy oo x) = CU)F(xy+v, ... x v, .o vy d [ U= p)),
=1

with

v+x—1

k x.
X, ] (1= p) (o)™,

cr=1T11

j=1

Next we consider the case with b and ¢ different from zero in (7). For notational con-
venience, set ¢ (1, 1) = ¢ and ¢,{1. v) = ¢,. Denote the probability function corresponding
to (7) by fi(x, y). Observe that when b= c = 0, fi(x, y) = g,(x, y). The (integral) m-fold
convolution of f,(x, y) with itself has probability generating function ¢, (u, v), probability
function f,(x, y), and marginal probability functions fy,(x) and fy,(y), respectively. With
some minor calculation we find
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- adww,|" c I
(6) ¢ mlu V) [l—dw.wzl Il—d+l—d¢'+l—d¢2
From (8) or (16) it is easily shown that
(17a) Splu, N=(1+6,(1 - u))™ "™
(17b) o1, V)= (14+6,(1—-v)) "™
and accordingly,

I'ix + m) 1 )" e ¥
(182) S = e |T+0 | |[T56,

__Ty+m) I i P

(18b) Sim ) Try+Drim) |1 +9, 1+6,
for x=0,1,....y=0,1, ..., and 8, and 8, as given in (8) and m= 1, 2, ... Define

AM=a/(l=d), Ay=86/(1 = d), A3=c/(1 ~ d) in (16). Since products of probability gen-
erating functions correspond to convolutions of probability functions, an application of the tri-
nomial expansion to (16) coupled with a termwise inversion of products of the form (17) with
(15) gives

THEOREM 1: The probability function of (16) witha, b.c,d 2 0, a+ b+ c+d=1,
b+d<l,c+d<1,is

“9) f,,,(x, ,V)" 2 ——— AgxleB(X) gm(x y) /)y(y)

fﬁff

- X wc ] AAEAY 2 me(x"f)f)y(y n)g, €. m).

a f.y =0 n=0

where ¥ runs over alla, B, y 2 0 such thata + 8 + ¥ = m. The operator . for convolution
over x is defined for two functions h,(x, y) and h,(x, y) by

X

h] .hz" z h](f. y)hz(x —é. y).
£=0
The operator * is defined similarly. WhenB = 0 or y = 0 in (19), fyo(x) and f,,(y) are taken
to be unity.

The distribution f,, (x, y) will be henceforth referred to as the BNB(a, b, ¢, p. q. m) dis-
tribution. The distribution g, (x, y), only when v = m an integer, is a special case of f,(x, y);
the distribution f,,(x. y) is not in generat infinitely divisible. The BNB(a, b, ¢, p. q. m) dis-
tribution is the discrete analogue to Paulson’s [10] bivariate gamma distribution.

As a direct consequence of Theorem 1 we obtain a closed form representation of Paulson
and Uppuluri’s [11] bivariate geometric distribution as

COROLLARY |: Form=1,d < 1, the BNB(a, b, c, p. q. 1) distribution is
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(20) Silx, y) = gailx. y) + b ! o_f {gl(x y)
l d 1 - d ] +0| 1 +0| ’
¢ 1 0, |
F1—a [Tves | (Tvey| T8

The requirement that the shape parameter m of f,,(x, y) in (19) be integer valued limits
the practical utility of the probability function. We are thus led to seek a representation for
which the shape parameter may take on arbitrary real values. This is equivalent to first deter-
mining whether f,, (x, y) is infinitely divisible, and if so, to secondly determining an expression
which is not tied to integer values m. In general, the BNB(a, b, ¢, p, q. m) distribution is not
infinitely divisible (Block, Paulson, Kohberger [4]) and no such representation will exist. The
BNB(a, b. 0.p. ¢q. v) and BNB(a, 0, ¢, p. q. v) distributions are, however, infinitely divisible
as are the BNB(a, 0, 0. p. q. v) distributions.

THEOREM 2: The BNB(a, b, 0, p, g v) and BNB(a, 0, ¢, p, q, v) distributions,
b+d<l,c+d<1,d<1,v >0, are infinitely divisible.

PROOF: In (16) replace m by v and write the resulting probability generating function
when ¢ = 0 as ¢, (c = 0). Then it follows that
1— db, g
1—b+dW, ||

(l - d)lb |!1J2 v a
2 ( = ==
21 ¢, (c=0) ll—d'lln'llz -4
The term in square brackets is infinitely divisible. The term in braces is infinitely divisible if it
is a probability generating function for arbitrary » > 0. But

(l"‘d\lll v l_d\lll
22) [1— b+ d)w.l e"p[ ['°g[ b+ m,]”

= expl (log(1 — d¥ ) — log(1 — (b + dW))]

exply i((b+d)’ d’)ﬂ

1+22[l[ lb"(b+d)""-11”

n=1 k=1

L+ 3 hib don )l

n=1

say, on successive expansion of log(1 — d¥ ), log(1 — (b + d)¥,) and the exponential func-
tion. For al v >0, 0<b< 1, 0<b+d<, h(b d n v)> 0 An application of
Theorem 12.2.3 of Lukacs (8] yields the infinite divisibility of the probability generating func-
tion {a(l — db )/ ((1—d) (1— (b+ dw DI Since ¢,(c=0) is a product of infinitely
divisible probability generating functions, it too, is infinitely divisible.
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The constructive nature of Theorem 2 provides the representation we seek. The term [}"
in (21) has probability function g, (x, y). The term {-}* in (21) has probability function given

by the termwise inverse of

a
1-4d

Hence, the inverse of ¢, (c = 0) of (21) is

14

1+ 3 hib, dn u)'llf')l.
n=1

23 £, (x, yle=0)= ll—-_ajd-l ‘g.,(x. y)

x = x+n—1
+g(x y)*Y hib d n,v)(l-—p)"p"[ x ]

n=1
We thus have proven

COROLLARY 2: The BNB(a, b. 0. p. g, v) distribution, b < 1, b + d < 1, has proba-
bility function f, (x, ylc = 0) given by (23).

Elementary computations provide the moments of the BNB(a, b. ¢, p. q. v) family. In
particular, the means and covariance matrix are provided in

THEOREM 3: The mean vector and covariance matrix for the BNB(a. b, ¢, p. g, v) dis-
tribution are

(24a)
and
vl (1 +6)) ﬂ‘?—_—‘Tbc)—o‘oz
(24b) ] _
(r” o} v(ad b(‘) 8, voy(1+6))

where #, and #, are given in (8c).

The conditional mean of Y given x is plotted against x in Figure 1. The data, taken from
Bates and Neyman [3], as depicted in this figure, strongly suggests that a nonlinear regression
function would be most suitable for describing the empirical relationship between X and Y.
Unfortunately, the Bates-Neyman distribution does not admit of nonlinear regressions. The
capability of allowing for nonlinear regressions seems to be fundamental in data analysis situa-
tions. The regression function for BNB(a. b. c¢. p. q. 1) (and, hence, also BNB(a, b,

¢, p. q. m)) is nonlinear.

THEOREM 4: The regression function E(Y|x) of the BNBf{a. b. c p. q 1)
distribution, & = 0, is

(25a) E(Vlxn = 74 S P %‘ k“'l, b= 0,

(25b) E(Y|x) = }q

1

v +dll - plx
N = ‘0.
l—d(l—p)lb ‘

VOL. 28, NO. 3, SEPTEMBER 1981

NAVAL RESEARCH LOGISTICS QUARTERLY




! BIVARIATE NEGATIVE BINOMIAL DISTRIBUTION 367
t
J’ ElYx]
@
.! ~— regression function
s (MLE)
i
[ ]
® ® data
X - Digestive Disease
Y - Respiratory Disease

[T N T T | Y
20 X

618 156 49 17 10 7 4 0 2 1 _ Number in mean
276 88 33 10 8 3 1 3 o

FiuuRe 1. Theoretical and observed regression functions for Bates-Neyman Data

where
(26) m=p+(U—-p)a+c), A=cm/l(a +c)(a + b)]

k=m/lm+b(0-p)l. d=1-a-b—-c

PROOF: The z-transform of E(Y|x) is defined by

. @n 2(ELY|xD) = g(z) = }_‘, X E[YIx]= 2 %y iyix),
#. x=0
(1 +op |
. 28) = (1+8) z 2 y filx. »),
: x=0 y=0
! 8, |’
since the marginal density of X is Pr{X = x] = ) —l—fz—l-
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But (28) may be expressed in terms of the probability generating function ¢ («, v) as

(29) ()= (1 +8)¢ L+,
gLz o ®t 0, -
- q 1 Az_ z2(z—m)
i=qgllm+bQ0-p))lz—k z-Kez-1D]’

after some computation and simplification. The inversion of g(z) (Jury, (7]) gives (25a), an
exponential regression function. Letting b — 0, ¢ — 0 in (25a) gives (25b).

The nonlinearity of regression is embodied in the term &**! in (25a) with k defined in
(26). The parameter b must be sizeable for small m in order that the regressions be nonlinear
over a range of x not far removed from zero. Thus, bivariate negative binomial data for which
this form of regression would be most applicable would possess appreciably more frequency
counts along the x-axis than along the v-axis.

The distribution g, (x. v) is central in the discussions of all the probability distributions
discussed to this point. The availability of an easily effected computational procedure for
g.{x. v) would facilitate the utilization of the negative binomial distributions. Since g, (x, ») is
expressible in terms of the hypergeometric functions, the Gaussian contiguous functions play a
dominant role in any computational scheme. First, observe from the definition of
Fla, b, c. z) that

Fo +x.viv,2)=(1-2)"""
Fe.v+yvv,2)=(10- z)"’“".

Thus, it follows immediately that

(30a) gv(x,o)-l“—d)“—l')(lj)'l p V+X—ll-
1-2 1 -z x

(300) o n=jiza-pu-9ll ¢ | v+y—1|

& (0. ) =2 4 -

The use of relationship 15.2.18 of Abramowitz and Stegun [1] allows (15) to be written as

& y)=00 - d) hi(x)h\y) l IxFo + x— 1. v +v,vi2)

x+yv+v
+@+py)O0-2)F@ +x.v+y+l;u;z)]|.

A few elementary manipulations give

(31) g lx. y+1)= ) [x+y+v)gx »)

-9
G+ -:
-plw +x-1Dg,(x— 1. I

which allows the entire probability distribution to be computed recursively from g, (x. 0) and
8. y),x20 y 20
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- d Estimation of the parameters of these probability distributions generally require nonlinear
optimization routines. Some of the computational burden can be reduced through judicious use
' of

THEOREM 5: For the BNB(a. 0. 0, p, g.v) distribution and if v is known the likelihood
equations for a random sample of size n are

(32a) Qlogl . ¥ L5 _R=0
da a
(32b) Qlogl . U=-p 3 5 Ra-yg
' ap p
‘, (32¢) MI_.: _(1_—4_)P+y_,$=0
i 0q q
‘1 where L is the likelihood function, x and y are the sample means for the marginal distributions,
: Re Ly, |2t L|&&y*D o he number of observations for which X
' ==Y n, |- . n,, is the numbe observatio = X,
~, "z . p . x 7) o IS ro ations for whic X
E Y = vy, and g, (x, v) is the probability function in (15).
o PROOF: If the probability function in (15) is differentiated with respect to the parame- ﬁ‘
. ters a, p, and q the following differential-difference equations '
9g, (x. y) v y 1y +1
‘ (33 —_— = | — + = )= = |—1gk y+1),
a) 32 prinr g (x. v) 7 g x y ) E
’ g, (x. ») 4
(33b) LLOLIE AR F SN ) g Sy A5 % PN
X -, ap 14 1- 14 1 - H
| dg, (x. v) . : »
o (33¢0) b ChalE A + =¥ g (x, v)— 1 jetl g (x, v+ 1)
) dq 9 l-g 1-g¢
* result; these equations follow by using (15.2.1, Abramowitz and Stegun [1])
]
f ———"’F“"a"""’ =D P+l b+ lic+1i2)
. 2 .
%
& and (exercise 1, page 296, Whittaker and Watson [13]), namely
-4
Py Fla. b+ 1l ci2)— Fla, bic.2)= %F(a+l. b+ 1,c+1;2).
The log likelihood function, log L, for a random sample of size n is 2 n,, log g, (x. y)
and so )
@

dlogL _ ¥ n 1 9g(x v)
da & g xoy)  8a

~
o3

,"“ Using (33a) and a few simple operations leads to (32a). Similarly, (32b) and (32c) are
! obtained.
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370 C. R.MITCHELL AND A. S. PAULSON

From (32) it is clear that

(34) l=p;_U-d5_ v

P q a
and these relationships are very useful in estimating the parameters via the method of max-
imum likelihood. For v known or not, the conditions in (32) are necessary for a maximum
likelihood solution to the likelihood function for b = ¢ = 0. Therefore, (34) can be used to
reduce the dimensionality of the unknown parameter space from four if ¥ is unknown, to two
by taking, say, p = qx/lgx + (1 — q)y] and a = v ¢/[(1 — g)¥]. We have used a nonlinear
optimization computer program to solve for the parameter estimates. The dimensionality
reduction permits extremely shorter running times.

4. APPLICATIONS OF THE NEW BNB DISTRIBUTIONS

This paper was originally motivated in part by the visual disagreeableness of the fit of the
regression function
gl + x)

1-¢q

of the Guldberg-Bates-Neyman distribution of (5) to the observed data as depicted in Figure 1.
The maximum likelihood fit of the Guldberg-Bates-Neyman model to this data is dismal as
measured by a x? goodness-of-fit, indeed, a linear regression is clearly not appropriate for this
data. We fitted the BNB(a. b, c_p. q. 1) and the BNB(a, b. 0. p. q. v} to these data
(Bates-Neyman, [3]) but obtained b = ¢ = 0 in the first case and b= 0 in the latter. Even
though the degree of fit as measured by x % increased substantially, the overall fit was still very
poor. The conclusion that the Bates-Neyman data possesses characteristics which preclude the
possibility of a good representation by a bivariate negative binomial seems inescapable. There
is thus no reason to present any of our results concerning this data.

E(Y|x)=

TABLE | — Bivariate Daia Sets

Parameters? of | Fig of Uni-

Description Sample Size Marginals: Univar'iate v.ariau? Neg.a-
of Data and | Mean and Variance Negative | tive Binomial
Correlation Binomial to Marginals

(EQ. (1) w, 0)| 2 df, P)}
Arbous-Sichel 248. 0.73 (X) 1947 :4.70,18.66 1.58,2.99 8.9, 13,0.78
Absenteeism *OUUTI(Y) 1948 :4.48,18.66 1.56,2.88 11.0,12,0.53
Bates-Neyman 1286. 0.42 (X) Dig. D. :1.40, 5.06 0.53,2.62 12.3,10,0.26
Diseases *UUUTI(Y) Res. D :5.32,22.13 1.69,3.16 25.4,20,0.20
Aircraft 109 —0.16 (X)1st 6 mos :0.62, 1.03 0.95,0.66 0.24,1,0.62
Flight Aborts v {Y)2nd 6 mos :0.72, 1.08 1.51,0.48 6.3,1,0.01

. . 2 L
ll’earson product-moment 2Via method of moments JProbabihly of exceeding computed X~ value with indi-
cated degrees of freedom

Table 1 shows selected summary results for all the data examined in detail. The first
column identifies the dawa, column 2 provides the sample size and correlation, column 3
specifies the marginal random variables and shows the associated sample means and variances,
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) BIVARIATE NEGATIVE BINOMIAL DISTRIBUTION N

J columns 4 and S show the parameters of the univariate negative binomial fitted to the marginals
and the associated x? values, degrees of freedom and probability levels, respectively. Resuits
from this table will be presented along with a discussion of the individual data sets. The absen-
teeism data of Arbous-Sichel [2] is examined first.

From Table 1 we see that the marginal distributions are fitted rather nicely by the univari-
ate negative binomial. Coupled with the fairly large sample correlation coefficient, it seems rea-
sonable to expect a bnb distribution to adequately describe the data. Arbous and Sichel fit the
G — B— N(1, 0, v) model to their data and report a x2 of 17.0 on 13 degrees of freedom
P (P = 0.20), indicating reasonable agreement of the data with the model. We give in Table 2
3 the expected cell frequencies obtained from the BNB(a, 0, 0, p, ¢, v) distribution along with
the observed cell frequencies for all but 12 of the nonzero observed cells. The expected cell
- frequencies for the two models are about the same and we thus expect a similar probability P to
j obtain for the fit of the BNB(a, 0, 0, p. q. v). Since Arbous and Sichel do not show their
) 1 grouping, we have not computed the x 2 statistic. The fits are comparable as judged by cell resi-
duals.

Although the fit of the G — B — N(1, 8, v) model to the observed data is reasonably

! good, the authors point out that 12 of the 18 observed means lie below the theoretical regres-

. sion function E(Y{x) = ¢ + x)/(1 — q). The BNB(a. 0, 0, p, q. v) model, via maximum

) likelihood estimates, gives rise to a regression function for which only 10 of the 18 observed
K means are less than the predicted values.

An attempt to fit the BNB(a, b, ¢, p. q. 1) and BNB(a. b, 0, p, g, v) models to these

‘ data was made but we obtained maximum likelihood estimates b = ¢ = 0 in the first case and
b = 0 in the second. The lack of influence of the parameters indicates the apparent adequacy
of linear regressions for the data. Although the fit of BNB(a, 0, 0, p, q. v) is adequate, a
bivariate beta binomial is a more appropriate distribution for this data.

b] Table 3 provides observed and expected cell frequencies for flight aborts for 109 aircraft.
The fundamental data consist of 109 pairs of observations (x;, y;), where x, represents the
number of aborts by aircraft i in the first 6 months and y; the number of aborts by aircraft i in -
the 2nd 6 months of a one year period. Most of the data fall in the (x, 0) and (0, y) cells and
this implies that the correlation should be negative. Note that the probability contours are
unlike those traditionally associated with negative correlation and that the distribution has its
probability concentrated along the two axes. The maximum likelihood estimates for the
BNB(a, b, ¢, p. q. 1) modelare @ = 0, b= .68, ¢ = .32, p= .17, § = .33. These values pro-

- duce an estimate of correlation of —.13. The solid borders in Table 3 indicate the grouping we

3 have used for x2. We find the x? statistic to be 10.2 on 6 degrees of freedom or P = 0.12, a

5
SO

raod e N
LR 3 2 .
A..i‘.s.-'l'.-t Yo

= marginally acceptable fit. The observed x + y has frequencies 34, 37, 17, 10, 9, 2 for
- x+y=0,1, ..., 5, respectively, and O for all x + y > 5. The mode is at x + y = 1 which
; makes more plausible a BNB(a, b, ¢. p. q. v) model with » > 1 since with» = 1, the mode is

at x + y = 0. Unfortunately, the BNB(a. b, c, p. q. 1) is not infinitely divisible (Block, H.W.,
A. S. Paulson and R.C. Kohberger [4]) and hence we will not be able to produce a better fit to
this data in the class of models introduced herein. One might reasonably be hesitant to call a
distribution which is not infinitely divisibie a "true” negative binomial.
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1 TABLE 2 — Observed and Expecied Cell Frequencies for
i Arbous-Sichel Dawa (248 Workers) under ¢ BNB (0.037,0,0.101,0.097,1.548) Model
N Y
0 1 2 3 4 5 6 7 8 9 110 {11 ] 12}113]14 ¢
: ol 70718t f
11.51]7.9214.49[2.36(1.19[0.59]0.2910.1410.0610.03]0.01 }0.01 ;
. 96 813 ;
: ] 8.25(8.5416.4614.2512.5811.4810.8210.4410.2310.1210.0610.03(0.02 (0.0} ;
= s 9196 s)u]3 2 ! 1
i 4.8616.7316.3114.9413.4712.2711.41]/0.84)0.49]0.27]0.15]0.08}0.04(0.02]0.01
- 3 YRR R ERE 20 1|1 ! !
..i 2.66[4.61151414.65[3.7112.7111.85{1.21]0.76[0.46{0.27[0.16]0.09[0.05(0.03
i NERNRAENERE 20 1] ! 1 ;
R 1.4012.9113.76]3.86{3.4312.7612.06{1.4610.99{0.64(0.4110.2510.15{0.09{0.05 !
= s 2 v vp2ps|2f1]1 1|3
o 0.7211.7412.56]2.9312.87]2.5212.04|1.5571.1210.780.52]0.3410.2210.13]0.08 :
: 6 bbb 2p2p3) 12 2 ! ! :
| 0.3611.01{1.6612.0912.2412.13}1.85(1.5111.16]0.86{0.6110.4210.28{0.18]0.11 l
' ] | 2 1 3 '
. 7
a 0.18{0.5711.03|1.4211.65/1.69)1.57{1.36{1.11]0.87}0.65|0.47{0.33]0.22}0.15 i
‘ 8 1 2 2 2 1 1 :
] X 0.09[{0.31(0.62109311.1611.2711.261.16]1.00[0.82{0.6410.480.3510.25]0.17 i
. 1 3 2 2
- 9
T 0.04{0.1710.36]0.5910.79]0.9210.9710.94)0.85(0.73{0.6010.47{0.36|0.27({0.19
. I [ I 1| 2 :
! 10 0.02(0.0910.2110.36|0.5210.64|0.7110.7310.70]0.6310.5410.44(0.35{0.27{0.20
- 4
;L ! |
'g 1 0.0110.0510.1210.2210.33]0.43{0.51{0.55{0.55]0.5110.4610.39]0.3210.26]0.20 .
- § 1 [ A 1
Qﬁ} 12 0.01(0.0210.07|0.13]10.21}0.29)0.3510.40.0.42{0.41|0.3810.34|0.29]0.24]0.19
k- d 13 1 1 1 1 1 1
0.01{0.04{0.0810.1310.19]0.24(0.28{0.31[0.31{0.30{0.28{0.25(0.21{0.17
1 1 1
14 0.01{0.0210.04|0.0810.12]0.16]0.2070.22|0.24(0.2410.2310.2110.18}0.16
! ! y
g
3 I 0.0110.02[0.0510.07|0.10]0.13]0.16]0.17]0.18]0.180.17{0.15]0.13
|
? 16 0.01710.0110.0310.0410.07{0.09]0.11[0.12(0.13]0.13{0.13]0.1210.11 :
= | 1
' 7
' I 0.0170.0210.0310.0410.0610.07}0.09/0.10{0.10§0.10(0.10]0.09
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TABLE 3 — Observed and Expected’ Cell Frequencies
of Flight Aborts for 109 Aircraft

H s T T 7T T T T T "
1 -+ T+ ++ -+ + + + +
. 6 -
i 2 — —- + + + + + + 4
i N b =+ 4+t
| A =+ + + 4+ A
£ 3 A1 ++

b ML 22 ]! l +o.s -+ A
b e Y -

1 169 g6 woz 30 ' i I_ _‘__.
0 a2 TR ° ol RE -+- B
369 159 04 34 1 1 L J )

0 1 2 k] 4 5 6 7 8

I1st Six Months

'Bivariate negative binomial distribution of (20). Maximum likeli-
hood parameter estimates are: @= 0, b= 0.6820, ©= 03179,
= 0.1655. §~= 0.3299. There results x> = 10.2 and P = 0.12 for
dr = 6.

5. DISCUSSION

We have produced and examined properties of a class of negative binomial distributions
which admit of nonlinear regressions and negative correlations. The most useful subset of this
class is infinitely divisible and therefore allows for a flexible fit to data. A nonlinear optimiza-
tion routine was used to produce the maximum likelihood parameter estimates.

Even though the development of models which admitted of nonlinear regressions and
negative correlations provided some of the impetus to this work, it soon became clear that
bivariate models with a different shape parameter for each margin would be eminently useful in
the modeling of bivariate data. A large number of attempts at developing such appropriate
negative binomial distributions of this type met with only limited success. It appears that a
model of a character much different from those heretofore discussed in the literaturs is
required to produce a multivariate negative binomial distribution which is simultaneously
' infinitely divisible, allows for nonlinear regressions, and different marginal shape parameters.
: The comparison of adequacy of agreement between data and model was based on the usual x?
f goodness-of-fit statistic, a procedure with serious shortcomings. An alternative procedure for

multivariate goodness-of-fit would be a welcome addition to the multivariate literature.
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374 C. R. MITCHELL AND A.S. PAULSON

The most appealing properties of our BNB(a, b, 0, p. q. v) and BNB(a. 0, ¢, p, q. v)
distributions are their infinite divisibility and nonlinear regressions. However, unless nonlinear
regressions are called for, it appears that any of the bivariate negative binomials would produce,
via maximum likelihood, an acceptable match to bivariate negative binomial data. It should be
emphasized that the maximum likelihood estimates need not produce the best fit of a model to
the data as measured, for example, by x2. Further, under maximum likelihood and ordinary
least squares, each observation is weighted equally; if the number of "tail’ observations relative
to the complete frequency count is small, then these procedures need not produce a visibly
nonlinear regression even when one is clearly appropriate. In this case an "anti-robust” pro-
cedure may be preferable to maximum likelihood and least squares in order that legitimate out-
lying observations be weighted more heavily. A case in point is provided in Figure 1 where the
bivariate negative binomial model is not appropriate but the data are correct and, unfortunately,
the model has been given preference.

Extension of our results to dimensionality in excess of two would require a little care in
ensuring the simultaneous infinite divisibility and nonlinear regressions. The computational
problems would increase with the complexity of the model which implies a necessity for parsi-
mony vis-a-vis realism tradeoff.

Finaily, we wish to emphasize that all of our results and discussion has a dual counterpart
in the bivariate gamma distributions of Paulson [10}. Accordingly we would define and work
with bivariate gamma distributions BVG(a, b. 0, p. ¢. v) and BVG(a, 0, ¢, p. ¢. v) in com-
plete analogy with the preceeding results.
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MINIMAX INSPECTION STRATEGIES FOR
SINGLE UNIT SYSTEMS
F. Beichelt

Department of Traffic Cybernetics
Hochschule fuer Verkehrswesen " Friedrich List*

i
: " Dresden, German Democratic Republic

j ABSTRACT
8 i A model for proper scheduling of inspections is considered, if system
‘1 failures can be detected only by checking. Two cases are analyzed: replacement

and no replacement of a failed system. On condition that no or only partial in-
formation on the lifetime distribution of the system is available, minimax in-
spection stralegies are obtained with respect to cost criterions.

i 1. INTRODUCTION

The following situation is considered: At time 1 = 0 a system starts working. The time to
its failure (lifetime) is a random variable X with the probability distribution function F(r),

= F(40) = 0. A system failure is assumed to be known only by inspecting. Each inspection
R entails a fixed cost ¢, and takes only negligible time. On the other hand, a downtime r of the
T system (= time between system failure and its detection) gives rise to cost v(¢), where v(¢) is

a continuous, strictly increasing function of +, t 2 0, v(0) = 0.

»
{ Let be S = {1} an inspection strategy (at time # the kth inspection takes place, when no
: failure has been detected before, 0= 1, < 1, < 1; < ...). The aim of this paper consists in

’i deriving inspection strategies, which are optimal with respect to some cost criterions. Results

’i., . are obtained in the cases where the lifetime distribution is completely or partially unknown. In
! the latter case, the expected system lifetime is assumed to be known.

To the knowledge of the author, the mode! described has been first analyzed by Derman
[10] (unknown lifetime distribution) and Barlow, Hunter and Proschan (2] (known lifetime dis-
tribution). Modifications of the basic mode! described have been treated e.g., in {1, 3, 12, 14,
15). This paper summarizes and extends results obtained by the author 4, 5, 6, 8].

2. INSPECTION WITHOUT REPLACEMENT
r

If an inspection strategy (short: strategy) S = {4} is in effect, then the expectec 'total)
; loss cost K (S, F) up to detection of a system failure amounts to

: M K P =¥ [ g 4. dF (o),
k=0
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Jq where
f & ) =(k+ e, +viy-x), 0K x €y }
i - .
-~ If a downtime cost can arise only in the finite interval (O, T), then inspections after T are not Y
{ necessary. Applying in this case a strategy S, = {f} with 0=, < < ... < 1, < t,sy=T
. the expected loss cost is z
' n [ .
: #) K(S, Py =3 [ gl 4.)dF(D + (n + De,(1 = F(T)). ‘;
k=0T % !
i }
1 Next F(1) is assumed to be entirely unknown. This assumption leads to the cost criterion i
Q3) K(S) = sup K(S, F), p
‘j FeF
. where Fis the set of all probability distribution functions F(;) with F(+0) = 0 and K(S. F) is ‘
‘i given by (2). A straightforward estimation of K (S,, F) yields
: K(S,,) = A"(‘}:\!ax . gk(lk, fk+|).

- A strategy, S*., satisfying
K(§%.) = mén K(S)

1 is called "minimax strategy.”

%
T THEOREM 1: Let n* be the largest integer n satisfying

n
e 4) Y villke) < T,
‘. k=0
i where v_!(x) is the inverse function of v(#). Then there exists a unique solution S%. = {r2},
) 0<nt<n<...<n <Tof

5 2000, ) = gl(ll. lz)"" e ™= e (tn" /i)

'

5

and S?. is minimax strategy.

L BT

PROOF: With n = n* Equation (5) is equivalznt to
(6) v(8,) = v(8y) — kcy, k=0,1, ..., m

- Ca
Lt L

28‘(- T, Sk'- vy — t» k=20 l, caey N
k=0
Thus, in view of the definition of »n* v(1}) € (n* + 1)¢; holds, and for any strategy S, with

r=n*+1
K(S2) - K@) <viD+e,=-(r+1)e; <vU)) —(n*+1)c, £0.

Therefore, a strategy S, with r > n* cannot be minimax strategy.
The functions g.(x, y), k =0, 1, ..., have two obvious properties:
(i) g.(x, y) is strictly increasing in y, if xis fixed, 0 € x € ».

(i) g (x, ») is strictly decreasing in x, if yis fixed, 0 € x € y.
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Let S, = {r) the solution of (6) with 0 € n € n* Assume there exists a strategy S, = {1}
satisfying

Gi) K(S,) < K(S)).

Let 1, be the smallest of the inspection times 4 with the property 7 # . Because of (i),
glt-y, 1) < K(S,). Taking into account (i) this implies 4 < ¢. Analogously, (i) and (ii)
yield 1, < 1, (for otherwise (iii) could not be satisfied). Continuing in this way, one finally
obtains 7, < ¢ and, therefore, g(r,, T) > K(8,) (see [16]). Hence, there cannot exist a stra-
tegy S, satisfying (iii). If §; and S/, 0 < n, < n; < n* are solutions of (6) with » = n; and
n = n,, respectively, then it can be proved analogously that K'(S,) < K (§,)). This completes
the proof of the theorem.

COROLLARY: n*is the largest integer n for which there exists a strategy S, = {1/} satis-
fying (6),0 < f < 5 < ... <1, < f,5, = T. Similarly, ¢ is the smallest time point for the

first inspection, which can belong to a solution of (6).

An analogous property of the first optimum inspection moment with respect to K (S, F),
if £(1) = F'(1) is known and of type PD, (polya density function of order 2), has been shown
in {5).

Derman [10) has already obtained the minimax strategy in case of v(1) = c;1, ¢; > 0. It
is given by
T_, o

n=k|l——+

* _ |- = >
prR 202(” k+DL k=1,2, ..., n",

where n*is the largest integer satisfying

2¢,T
nin+1) < © .
€

Now suppose the lifetime distribution of the system to be unknown with the exception of
the expected lifetime u = E(X), 0 < & < oo, The condition that downtime cost occurs only
in (0, T) is now dropped. Let

K, (§5)= ’séxpu K(S, F),
where K (S, F) is given by (1) and

F, = F;FGI:".p.=fn rd F(ny.

A strategy, S, satisfying
K (S} = min K, (S)
is called "partial minimax strategy.”

Within a more general model Hoeffding [11] has shown that for any S = {1}
sup K(S, F) = sup K(S, F),
ek,

¥ AN
FEF,
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J where F? is the subset of those elements of F, having exactly two points of increase. Routine ﬁ
l calculations yield
| @ Ku(S) = 209, G5 |
\!l m<
l where
. t; — -t
3 GU(S) - 'j__':; g, i) + %:_l:- gj('j- 'j+l) i
. {
F and m = m(S) is defined by )
’ ‘ (8) tw € p < 4 (see (8] for details). i
! j A strategy, S ={1), is called strictly periodic with the inspection interval &, if i
- 8=8, =g, — forall k=0, 1, ... ; notation: § = S®, "K,(S) has a simple structure for
’g strictly periodic strategies:
A ¢
.“ 9 K, (S®) = AT v(®) + c,. 1
: This results also from a straightforward estimation of K (S, F) if F € F,:
4 o (k+1)B
g ®) = -
! K(s® P =3 S T+ Doy + vk + 18 — 01dF ()
- o (k+1)b
| < k}_:(,fka (G + Dey + v@)] dF (1)
‘ =5 X k&) [F((k + 1)8) ~ F(k8)] + v(3) + ¢,
g k=0
! o
1 Q—S—M+V(8)+C|.
i
G Thus, if v(¢) is differentiable the optimum inspection interval 8 with respect to K,(5®)
' ; satisfies
Qj (10) 82 V() = pcy. {

There exists always a positive solution of this equation. Especially, for v(1) = c,t the unique
solution is

& (11) 8;"\NLC|;C2.

THEOREM 2: There exists a strictly periodic partial minimax strategy.

i PROOF: Assuming there exists a strategy S = {1} with the property
W (12) K, (S) < K, (5*).

G,;(S) can be written in the form
G,;(S) = (i +1c; +vB) + @~ 1)y q

G = i)ey +v(3) — vi)
(1, — 1)ey '

with a, = 0€i<m<j
1
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Further, let a, = sup a,and a =“m|2 a,. Without loss of generality it can be assumed
\l m

0< g < oo, PumngB = |/a there holds in view of (9) and (12) forall 0 € i <

G+ Do, +vB)+ W~ 1t)ja < pcia +vj— l + ¢
Starting with / = 0 induction yields
(13) 8, <1la 0<ig<m
Let be io defined by a, = a. Then it must be

G —igey+v3)~6,)

TR a j>m

Using (13) it can be inductively seen that &, <§,, j > m But this implies
a=supa,, 1/8,", contradictory to (13). Hence, there cannot exist a strategy § satisfying

>m
(12) and the theorem is proved.

The proof given shows, moreover, that every partial minimax strategy must be strictly
periodic. lts inspection interval is a solution of Equation (10).

Analogous problems, where, instead of the expected lifetime, a percentile of the lifetime
distribution is assumed to be known, have been treated in (5, 8, 13, 15].

3. INSPECTION AND REPLACEMENT

In this section an obvious extension of the basic model with 4 known is considered.
Immediately on discovery of a failure the system is replaced by a statistically equivalent one.
Each replacement requires a fixed cost ¢; and a fixed time d. The inspection-replacement pro-

cess is continued unlimitedly.

In what follows it is assumed v{r) = ¢, where c; is restricted by

(14) (¢, + c3))/p < ¢y

Otherwise, the expected loss cost per unit downtime of the system would be smaller or equal
than the mean loss per unit time which arises by "ideal inspection and replacement” (i.e., failure
of the system is detected immediately and replacement takes negligible time). But then inspec-
tion and replacement are uneconomical from the first.

The expected length of a cycle (time between two neighboring replacements) by applica-
tion of the strategy S = {1} is

LS, F) = 3 tenr IF(ga)) = F(1 +

k=0

Thus, the expected loss cost per unit time C(S, F) amounts to
K(S. F) + C3
LS F)

where K (S, F) is given by (1).

C(S, F) =
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Brender [9] has dealt with the problem of calculating an optimum inspection strategy with
respect (o C(S, F) if Fis known. If Fis completely unknown the corresponding mimimax
inspection strategy is easily seen to be trivial—no inspection and replacement at all (a nontrivial
< minimax inspection strategy exists if v{(r) is strictly convex [7]).

BUTI Wi

Let
C,(8)= ’seua C(S, F).

———

To get the corresponding partial minimax strategy, the following lemma is needed. For being
only a slight generalization of an approach used by Brender {9] its straightforward proof can be
omitted (see [6] for details).

oY R

LEMMA: Let be
oS, x) = Sup [K(S, F) + c;— xL(S, F)]

o
.

and assume for all x, 0 € x < ¢,, the existence of a unique strategy S{x) and of a number x,
0 < xy < ¢3, 5o that

QS(x), x) = mén Q(S, x) and Q(S(xy), x4) = 0.

am—— e

Then S(x,) is the unique partial minimax strategy and x, = C“(S(xn)).

- K(S, F) — xL(S, F) has for every x, 0 < x < ¢,, the same functional structure as
' K (S, F). Hence, Theorem 2 secures the existence of a strictly periodic strategy S(x).
According to {11) its inspection interval §{x) is given by

] (15) 3(x) = Juc,/(c; — x).

It follows from (9) and (15)

? QS(x), x) =2Jpclc; = x)~x(u+d) +c,+cd + c,.
3 3 Of course, Q(S(0), 0) > 0, and in virtue of (14) Q(S(c,), ¢;) < 0. Hence, a unique solu-
: ; tion x, of Q(S(x), x) = 0 exists:
. ) ]
Q’; 1 2uc, HC) ncy
x(,=“+d c,+rzd+c_;-“+d+2 u+dc2n-—c,—c3+“+d .

Minimax inspection problems for replaceable systems, where, instead of the expected life-
time, a percentile of the lifetime distribution is known, have been treated in [6, 16].

2y~

b
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> THE ESTIMATION OF P(x < Y) FOR DISTRIBUTIONS
USEFUL IN LIFE TESTING*

A. P. Basu

University of Missouri
Columbia, Missouri
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ABSTRACT

In this paper the reliability function R = P(Y < ¥) has been estimaied
when Yand ¥ follow gammu. exponential or bivariate exponential distributions.

W

e mside

The paper is partly ¢xpository.

1. INTRODUCTION

Let X and Y be two random variables with cumulative distribution functions F(x) and
G (y) respectively. Suppose Y is the strength of a component subject to a stress X. Then the
component fails if at any moment the applied stress (or load) is greater than its strength. The
stress is a function of the environment to which the component is subjected. Strength depends
on material properties, manufacturing procedures, and so on. The reliability of a component is
the probability that its strength exceeds the stress. From practical considerations it is desirable

to draw inference about the reliability function.

The above model was first considered by Birnbaum (2] and has since found an increasing
number of applications in many different areas, especially in the structural and aircraft indus-
tries. For a bibliography of available results see Basu [1].

In many situations, the distribution of X (or of both X and Y) will be completely known
except possibly for a few unknown parameters and it is desired 10 obtain parametric solutions.
Thus, in case of missile flights, the stress may be expensive to sample, but the physical charac-
teristics of the missile system, such as the propulsive force, angle of elevation, changes in
atmospheric condition, and so on, may all have known distributions; consequently, the distribu-
tion of stresses can be calculated. Church and Harris [4], Owen, Craswell and Hanson {8}, and
Govindarajulu [6] have considered the above problem under the assumption that X and Y have
normal distributions. Since in many physical situations, especially in reliability, exponential and
other distributions provide more realistic models, it is desirable 10 obtain estimators of R for
distributions useful in life testing. In section 2 we consider gamma and exponential distribu-
tions under the assumption that X and Y are independently distributed. The case of a bivariate
exponential distribution is studied in section 3. Two distribution free procedures are mentioned
in section 4. The effect of misspecifying the mode) is considered in section S and a numerical

example is given in section 6.

*This rescarch was supported in part under contract NOOO13-78-C-0655 for the Office of Naval Research.
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K 2. GAMMA AND EXPONENTIAL DISTRIBUTION

Let Vand Y be independently distributed with density functions

~, n
QN Jix) = ," e "L x>0, p>0
I"(p)
79 . Bq B,y \
(2.2 gly) = — e Pyt e >0, ¢>0
I'(¢g) '
respectively. Then
— - - no w B‘I Byg -1 g a’ RNV  IF :
(2.3 Ry=px<pn=f"|f Fgy © ] Ty e !
_% T+ k) a’Bt |
< l‘(p)l‘(/\ + l) (a +ﬁ)/y+k' H
Here p and ¢ are assumed to be known integers. .
Note: R)) = a/la +8), and R, = R{, for all p. Also, '

g ! a 4 1
R|‘,= z w/u)kR:\rl = -— (l—R”)k‘l.
A0 B A =8

In particular,

Ry = RIZI- Ry = Rill-
Ri;= Ry + B/a)R},
R,,= R, + B/a)R}, + B/a)R},.
Rss= R} (3= 2R,).

If Ry, is close enough 10 one, as is expected for items with high reliability,

R, = % (1= Ry).

Expressions for R, and R, indicate that in this case the expression for the reliability is not
strongly dependent on the choice of the parameter p (especially if p is small}) and the distribu-
tion of X can be approximated by the exponential distribution without much distortion in the 5
value of R,. However, so far as the parameter ¢ is concerned, the situation is quite reversed.

The value of reliability is heavily dependent on the choice of the underlying distribution of ¥V

and one has (o choose the value of ¢ mare carefully. Later in section 5, we shall further study

the effect of misspecifying the parameters p and ¢ and confirm our conclusions by numerical

studies.

AR 0 B o VORI 1 o

If two independent random samples, (X,, X,. ..., X,,) and (Y, Y,, ..., V,), from the
two gamma populations are available, maximum likelihood estimators (m.l.e.) of @ and 8 are
4q
T

s _ % Tp+k) ag!
(2.4) R, = . - - .
m E;, FeTtk + 1 (& +p8)*
As special cases, if ¢ = 1, that is, if X follows the gamma distribution and Y follows the
exponential distribution,

given by a = % andB = =. Hence. m.le. of R, is
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n

a
& +8

(25) Rpl =

Finally, if both p and ¢ are equal 10 1, we have the case of two independent exponential distri-

butions, and we have

(2.6) Ry= 2= —"—.
a+f X+Y

~I

Since R in 2.6 is a function of -% the exact distribution R can be obtained in the exponential

case. [t is well known that é 2 follows the Fdistribution with (2m, 2n) degrees of freedom.

Y B

Thus, the distribution of R,, follows. The result will be used later in section 5 to compare the
performance of independent exponentials with those of dependent exponential models. Using a
theorem in Rao [10], Theorem 6a.2, page 321, the distribution of R,, in each of the above
cases, for large m and n, can be shown to be normal and hence an estimate of the asymptotic
confidence interval for R can be obtained. Thus, in this case with m = n we have for large n,
Vn (R,, — R,,) ~ N(0,0 ). Expressions for R,,, R, and o}, for a few selected values of p
and q are given below.

- Y 2a’B?
Ryy=—= ===, 0}= 2L
Tars TN @)
T 472 6a ‘B2
Ry=|—= z|=*:'———~7.0§|=—§—-g
a +p (X +2VY)° (ax +8)
. % 2XY 6a 38"
Rip= ——+ aB 7 Rp= —=——=-+ —= -—2"7122=—LT~
a +8 (a +B)° (Y +2X) (Y +2X) (@ +8)
2 2 N ) ¥7?
Rpm — &, 2% = = 2XY

— — + — -,
X+ (X+71
a}=36@B)/(a +B)*

(@ +B)? (@ +p8)’

3. BIVARIATE EXPONENTIAL DISTRIBUTION

Since the exponential distribution is considered a useful model in life testing problems, it
is desirable to consider bivariate analogues of univariate exponential distributions which will
have properties similar (o those of the univariate exponential distribution. Marshaii and Oikin
[7) have proposed a very important bivariate exponential distribution (BVE), which is given by

(3.1 Flx, =P(X>x Y>p=c¢
OSA,,AJ,)\,2< °°,A|+)\|2>0.A2+A|2> O(X > O.y > 0)

A v =A v =A maxive)

The BVE arises in several natural ways and is considered a useful model in reliability with
appealing properties.

Let (X,. YY), i=1,2 ..., n be a random sample from (3.1). We shall estimate
P(X < Y) when (X, V) follows the BVE. It can be readily obtained from (3.1) that

A

(3.2) R=PX<Y)=
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Hence, R is estimated by

. X
Xi+X,+Xh);

where ):,, ):2, and A\, are the maximum likelihood estimators of A, A,, and A, respectively.
Various authors have considered maximum likelihood estimation of the parameters A, A, A,
However, no explicit solutions of these parameters are available. In order to obtain an explicit
form for R, we replace the m.l.e. by some special ad hoc estimators called the "INT" estimators
of Proschan and Sullo [9] which have very high asymptotic relative efficiency compared with
the m.l.e. estimators. Let n, = number of pairs such that X; < ¥,, n; = number of pairs with
X, > Y, and ng = numbers of pairs with X, = Y,

The "INT" estimators are given by

L n, n L] np n
(34) AI - ——"_” ¥ = ) AZ- o n -
1 0 z Xi 2 0 2 yi
i=1 i=1
and
" ”2 ”' n
A= ngll + max(X;, Y,).
12 0 ny + Ny n, + no ,.zl ( ! ')

Proschan and Sullo also prove the following theorem.

THEOREM (Proschan and Sullo): n/2(X, — A) is asympoto. ally trivariate normal with
mean 0 and d.ispersi‘on ‘r.nat;ix Y= (o',j) where, using the suffix n to denote dependence on the
sample size, A, = (A;, Ay, A1), A = (A1, Ay, App)', 0= (0,0,0)’

(3.5) o= 00 —AnyY,

ou=AAN LAy )

T == AAA A Ay + Ay @y,

Ta=AA =AY,

o= —AAA AR+ Ay @y,

ou=Aph = APy H Ay + 220y )
and

A=A +A,+N 1 Yi=A +Ap

Ya=Ar+Ap

0= Elmax(X, Nl=y' +y7'—a""

R is then esumated by R - MI(M +)\2 +A,2) rather than by R. Since R is a totally

differential function of A I )\2, and X 12 by Theorem 6a.2(ii), page 321 of Rao [10], V7 (R — R)
is asympototically normally distributed with mean zero and variance o 2, where

2 2 2
y Y3 i A |Yz A
(36) o -FU"+F(022+U33)- (0‘|2+0'”)+2 T 3.
NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. 3, SEPTEMBER 1981
— S
e IR N R 7 o, D e i e e




ESTIMATION FOR DISTRIBUTIONS USEFUL IN LIFE TESTING 387

Thus, from (3.3), (3.4) and (3.6), one-sided and two-sided confidence limits for R can
readily be obtained.

To check the adequacy of the large sample approximation when the underlying distribu-
tion is BVE, computer simulations were made. For various values of (A, A, A ;) 500 sets of
random samples of size 7 (n = 10, 18§, 20) from bivariate exponential distributions were
obtained and the empirical distribution of R was obtained. Even for sample size as low as 10
the exact distribution is found to be well approximated by the normal approximation. The
situation improves as the sample size increases.

4. DISTRIBUTION FREE PROCEDURES

In al} the cases considered in the previous section to check adequacy of normal approxi-
mation, the value of R is rather small (R < .75), whereas applications of interest woulid be for
systems with high reliability (R > .90). Unfortunately, in all the cases with R > .90 con-
sidered, the sample estimate of the variance of R came out to the negative or very close 10
zero. (The situation is similar to the problem of having "negative™ estimator of variances in
analysis of variance problems.)

To study the cases for which R > .90, we therefore consider the following estimators of
R:

For bivariate data, a rather natural way to estimate R = P(X < Y) would be based on
the binomial distribution. Let T be the number of cases for which X < Y. Then Tis a bino-
mial random variable with mean R and variance nR (I — R). We therefore can obtain an exact
binomial confidence interval or an approximation two-sided 100 (1 — y)% confidence interval
given by

4.1) (k-z, /éu—k),,hzy /ﬁ(l-m"
n n

where R = T/n and Z, is such that ®(Z,) = (1 ~ y/2), where ®() is the standard normal
distribution.

If X and Y are assumed independent, a second estimator is the following nonparametric
confidence interval proposed by Govindarajulu [6] and is based on the Wilcoxon-Mann-
Whitney statistic.

Let (X, X, ..., X,,) and (Y,, Y5, ..., ¥,) be two independent samples of measure-
ments from populations with distribution functions F(x) and G(y) respectively. Let

1 ifX <7,

WX, Y) =10 otherwise

then U= 3 Y ¢ (X, Y) is the well-known two sample Mann-Whitney statistic. That is,
1

rml] g

U = number of pairs (X,, ¥,) such that X, < Y¥,. Govindarajulu [6] has explicitly derived
one-sided and two-sided distribution free confidence bounds for R (actually Govindarajulu
derived confidence bounds for 1 — R) based on the asympiotic normality of R = U/mn. In
particular, for the two-sided case, Govindarajulu showed that for all Fand G and large m or n,
the solution €, of the inequality

VOL. 28, NO. 3, SEPTEMBER 1981 NAVAL RESEARCH LOGISTICS QUARTERLY




-4 aea

NN A. P. BASU
W n PUR-RI€e) 21—y, 0<y<lI
s g1 en by

€, 2 (@) "o (1 - /D).

tlere = mintm, n) and ®(-) is the cumulative distribution function of standard normal distri-
butien. In particular, if m = n, a 100 (1 — y)% confidence interval is given by

4+ (R - €, R +e€,).
where R and Z, are as defined before, and
ZY
€, = .
2Vn

S. EFFECT OF MISSPECIFYING THE MODEL

In section 2 it was pointed out that for value of P(X < Y) close 1o unity, R, is less sen-
sitive 10 the variation of p and varies considerably for varying values of ¢. To study the effect
of misspecifying the model we carry out the following Monte Carlo experiment.

Let G(x, p) and G{B, ¢) be two given gamma populations with known parameters
ta, p) and B, gq) respectively, wherea = 19and B8 = 1. In thiscase, if p= ¢ =1, R;; = 95.
By choosing different pairs, (p, ¢), we get different pairs of gamma distributions.

Let (X,, X5, .... X,)and (Y, Y,, ..., Y,) be two random samples from G(«, p,) and
G{@B. q,). Since p, and gq,, the true values are not known, there is a possibility that we will
choose a different pair of distributions as the true model. Let us assume that the above sam-
ples have come from populations with distributions Gla, p,) and G, ¢,). Thus, we would
estimate R,,_,,,I instead of estimating the true value Rf'm* and compute a confidence interval

based on R, . We would not commit much specification error if this confidence interval con-
tains the true unknown value R, ,. For a given n and two pairs of values (p;, q,) and

(p>. q;) the above procedure is repeated 1000 times and a count is made of how many times
the true value R, , is contained in the confidence interval based on R, . We repeat the pro-

cedure for different values of n and different combinations of (p,, ¢,) and (p,, q;). The
results are given in Table 1. Here n is chosen to be 5, 10 and 25. All combinations of the fol-
lowing pairs of values are chosen for {p|. q;) and (p;, q;): (1, 1), (1, 2), (2, 1) and (2, 2).

From Table 1 we can make a number of conclusions. First, note that no parametric
method performs well in all situations. For all the gamma models considered, the procedure, as
anticipated in section 2, is robust for small variation in p. However, it is sensitive to variation
in q. The nonparametric confidence intervals based on the Wilcoxon-Mann-Whitney statistic
performs well in all cases. However, in each case the width of the confidence interval for an
assumed model is too large compared with the corresponding width based on the parametric
models. In each case the parametric method is to be preferred, especially if the parameter ¢ is
reasonably well specified.
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4
S TABLE | — a. Number of Counts for N = §
TRUE MODEL
GL.D= o) 6.2 GQ 2
Exponential
: g R, .. 95 9025 9975 | 99275
1 ol ¢ b 933 967 46 77
. s exact
- al 6. b
3 j s | normal BSS 934 1000 1000
g i 2 approx.
7 2 G6a.v 763 819 66 93
R G(l. 2 287 487 828 938 ,
[ - G2, D 209 371 725 871 :
' *NP pr 998 991 1000 1000
'[ *Nonparametnice Procedure
M
TABLE | — b. Number of Counts for N = 10 1
. TRUE MODEL 11
GUL.VE o 6.2 6GQ. D
g Exponential
: 2 R, . 93 9025 9975 | 99275
» g| o4 947 976 0 2
& = exact
L = .
§ a (J”. l)
-y 73] normal 913 952 188 348
% % approx.
-y 20 G2 n 775 838 0 i
<! G, 2 133 293 869 968
G2, ) 58 192 750 906
*NP pr 999 996 1000 1000
*Nonparametric Procedure
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. J TABLE | — c. Number of Counts for N = 25
, TRUE MODEL
's GULD=" oy 60,2 6@ 2
< Exponential ]
; u-:_] Ry, .95 .9025 9975 99275
g 6. b 945 964 0 0
. = exact
' al G, D
= S| normal 934 964 0 0
» ,; S| approx. ‘
:. 4/ 6an 768 812 0 0
3 G, 2) 6 82 925 982
3 GQ2.2) I 27 754 928 ‘
‘i *NP pr 1000 998 1000 999
H ) *Nonparametric Procedure
- 6. AN EXAMPLE
‘ ]. To illustrate the computation of confidence intervais let us consider the following exam-
. ple. Fifteen items of random strengths Y,, ..., Y,s are subject to random stresses
f Xi. X3 ..., Xi5. To estimate the reliability function P(X < Y) random samples of 15 pairs
: of (X, Y) values are drawn and given below.
-,:.; Pair No.
- 1 0352  1.7700
R 2 0397 9457
" 3 3 0677 1.8985
Y 4 0233 26121
i 5 L0873  1.0929
»d
%f-i 6 1156 0362
%) 7 0286 1.0615
b 8 .0200 2.3895
% 9 0793 .0982
10 .0072 7971
2 11 .0245 .8316
i 12 0251 3.2304
N 13 0469 4373
- 14 0838 2.5648
’ 15 0796 6377 4
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: From past record it is known that R = .95. Estimates of R, , and corresponding confidence
R interval will depend on the model chosen and the method used to compute the confidence
! i interval. Thus, if X and Y are assumed independent, we have two independent samples of size
’ I5 each. Table 2 lists the values of R, , and confidence interval for the cases considered in
section 5. We also use the notation of section S for convenience. ;
i
‘ TABLE 2 — Comparison of Various Confidence Intervals
; and Estimates of R
! Model Used R Confidence Interval
4 G(1, 1) exact 9639 | (.9280, .9823)
L 1 G (1, 1) normal approximation | .9639 | (.9300, .9978)
$ i G2, D 9639 | (9416, .9856)
A G, 2 9952 | (.9896. 1.000*)
1 G2, 2) 9962 | (9925, .9999)
Binomial Procedure .9333 | (.8071, 1.000%)
Rt NP Procedure 9600 | (.7070, 1.000*)
._ . *Computed as being farger than |
ok
hi
o _ Let us iliustrate the calculation for a couple of cases. From the above data we have
X = .0509 and Y = 1.3602. If we assume p, = ¢, = | we have, using resulls in section 2,
. Ry = =1 = 9639
. X+Y
4 and corresponding 95% confidence interval for R,,, using normal approximation, is (.9300,
. .9978). 1
' On the other hand, if we used the exact distribution of R,,. we can obtain the required
: confidence interval from an F-table since U = ;.)., B foliows the F-distribution with (2n, 2n)
3 [¢4
‘ degrees of freedom we obtain, after some simplification (.9280, .9823) as the required 95%
& confidence interval.
X|

From Table 2 it seems any of the first three procedures based on two independent
exponential distributions or G(2, 1) (X gamma with shape parameter p = 2 and Y independent
exponential) will be quite satisfactory.
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: OPTIMAL SELECTION FROM A RANDOM SEQUENCE
‘ WITH OBSERVATION ERRORS
g T. J. Stewart
i National Research Instinne for Mathematical Sciences
- . .
{ Pretoria, South Africa
j ABSTRACT
9 i A form of sequential decision problem is introduced in which options are
‘i presented in sequence, with no recall of rejected options (as in the secretary
i problem), but in which the value of cach option may only be inferred from ex-

periments.  Decisions have thus 1o be made concerning both the acceptance

_) and rejection of cach option and the degree of experimentation. General pro-

' perties of the optimal policy are derived, and an algorithm is obtained for the

} solution in a special case. This special case suggests a heuristic rule for more

B general situations, the performance of which rule has been investigated by a
i Monte Carlo study.

1. INTRODUCTION

b We consider a sequential decision problem in which a known finite number of options,
S having values drawn from a known probability distribution, are presented in random order to
. the decision maker who cannot observe the values directly. The decision maker has to perform

a number of tests on each option (for instance by some form of sampling) in order to make
inferences about its unknown value, and must finally decide on the acceptance or rejection of
this current option before the next becomes available. We assume that the total number of

4

4

< tests that can be performed is strictly bounded above (owing, for instance, {0 budgetary con-
-y straints). According to a criterion to be discussed in the next section, only one option may be
{,‘j chosen.

The problem sketched above is a simplified representation of a number of practi:l situa-
tions. A mining development company may, for example, obtain options on various mineral
deposits from time to time, but have to make a decision on each (either giving up the option to
another or committing its resources to developing a mine at that site) before prospecting on the
next site can even start. The value of each mineral deposit is, of course, unknown to the com-
pany and must be estimated by bore-hole samples. These are, however, expensive, and a lim-
ited number only can be afforded before a final decision has 10 be made.

A similar situation may be faced in the procuring of major capital equipment, where
expensive operational tests may be necessary 10 select between alternatives, and where, for
practical or political reasons, negotiations with only one potential supplier at a time is possible.
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. here. Nevertheless, a model of this nature can be used to gain valuable understanding of the
real problem, as discussed in some detail in Stewart [9].

It may be recognized that the problem described in the opening paragraph is essentially a
generalization of the well-known ‘secretary’ or ‘dowry’ problem in the case of values drawn
from a known distribution (for instance, the ‘full information game’ of Gilbert and Mosteller
[3]). extended 1o allow for imperfect information (i.¢., observation errors) on the value of each
candidate. Note that we use ‘information’ in a different sense from that of Gilbert and Mos-
teller, where ‘full information’ refers to complete knowledge of the distribution from which the
values are drawn, but where observation of each value is implied 1o be error-free. The {
antithetical case of those writers is such that only relative ranking of candidates is possible, but e
in our model even ranking may be in error owing to observation errors (even though ‘full
information’ concerning the underlying distribution is assumed to be available).

b -

| ]
]
, 394 T. ). STEWART
d
X These practical situations are generally more complex than the decision model discussed

MacQueen {4] has treated a somewhat similar problem, involving an unbounded number :
of options in a random sequence, but with a cost incurred in obtaining each new option. In his 3

- problem some imperfect information is available on receipt of each option, and further infor-
mation can be obtained, at a cost, by executing a single test on the option. The present prob-

- lem differs from that of MacQueen in three main aspects:
(1) the number of options is bounded:

(2) the degree of testing is variable (under control of the decision maker), and ol i

¥ (3) expenditure on testing is strictly limited.

The poohlem is also related 1o recent work on partially observable Markov processes (see,
for instance. Smallwood and Sondik [7], Sondik (8] and White [11]). In our case we have
sufficient special structure to warrant special attention, but there are also some differences, i
especially in respect to the variable degree of testing and the budgetary constraints.

P ST

In Section 2 the problem is formulated more precisely and the decision criterion dis-

cussed. {

General properties of the solution under certain mild assumptions are developed in Sec- 1
tion 3. In particular it is demonstrated that given a realization of a sufficient statistic y for the s 1
value of the option based on the tests conducted, there exist two critical values u and w such
that the option is rejected for ¥ < «, accepted for y > w, and further tested otherwise. These
critical values depend on the numbers of options and permitted tests remaining, and on the

number of tests already conducted on the option. {
r
[ 4

pi 3

In Section 4 a special case is introduced, for which a specific algorithm for computing
these critical values can be obtained. Not only is this algorithm of use in its own right, but the
special problem suggests an adaptation of its use as a heuristic for more general probiems.

Section 5 consists of a discussion of a Monte Carlo investigation of the behaviour of this
heuristic.

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. 3, SEPTEMBER 1981
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2. PROBLEM FORMULATION AND DECISION CRITERIA

We shall throughout the paper denote random variables by capital letters, and their
specific realizations by the corresponding lower case letters. Conditional probabilities of the
form PrlZ|Y = y] will for convenience be written Pr{Z|y], and a similar convention will apply
to expectations, probability distributions and density functions. In order to avoid technical
difficulties we shall always assume that the probability distributions have densities. The random
values Z, and observations Y, (defined below) will be assumed to be real-valued scalars.

Now assume that a known number N of options are to be presented, and that the value of
option n{n=1, ..., N) is the unobserved random variable Z,, drawn from a known

probability distribution F(-):
F(z) = PriZ, < z].

Inferences concerning the actual realization of Z, are to be made on the basis of observa-
tions on r independent random variables Y,,, Y,.. ..., Y,,. (The choice of r is discussed
later). The probability distribution of Y,, conditional on Z, = z, is given by the known func-
tion G(y,,1z,), with corresponding density g(y,,z,). Adopting a Bayesian approach, the prior
distribution of Z, is F(z,), while the posterior distribution is given by F,,(z,ly,;, ..., y,) for
r> 1

(l) f-ur(zulynl' e yur) = KJ.:S: g(y,"lZ)dI:",,»l (zlynl' ceen Yoo |)

where K is an appropriate integration constant and where for convenience F,o(z) is defined as
F(2).

In setting up decision criteria two factors have to be considered, viz. the cost of observa-
tions and the objective of selecting a satisfactory option. These factors could, in principle, be
handled in a variety of ways, but for practical reasons it is necessary to adopt an approach that
shows promise of yieiding workable solutions. We shall thus assume the following structure for
the problem:

(1) a fixed total number of observations R will be allowed, which is equivalent to assum-
ing a fixed budget;

(2) the objective of the decision-maker is to maximize the expected value of the option
chosen.

Now let:

YurpWurs -~ V) A expected optimal value of the option chosen, given that option n is under
consideration {the first n — 1 having been rejected), that r observations Y, =y, ...,
Y, =y, have been made on #, and that altogether p observations have been made on the

first n options;

and then let

Vmp(yuh cen e Vi |) é E[‘y:"u(yul' e ym)‘yu\' coee Y I]'
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In evaluating the expectation in the latter definition we use the posterior distribution of
Y., . i.e., we use the probability density for Y,, defined by:

(2) g;u—l(ylynl' e yn.r—l) A fl(' g(.}'lZ)an.l—l(z l.vnlv e yn.r-l)-
Forr > 1, p < Rand n < N, three options are available at this stage, viz.

(i) 10 accept option

(ii) 10 make another observation on #,

(iii) to reject option n, implying that option » + | and the first observation on it become

available.
We thus have the following expression for v, Va1, ... . Vo)
(3) 'anp(ynl- R ynr) = Max [E[Zn'ynl- DR ynr};

Vu.l*l,p-rl(.vnlv e .an)'- Vn+l.l.p+|]

where we note that V., ., does not depend on any observations. Then by invoking a
dynamic programming argument (see, for example, Chow, Robbins and Sigmund [2], Section
3.2), we have the following recursive relationshipforr > 1,p < Rand n < N:

4) V,,,,,(y,,,. vees y,,_,_|) = fl(' [(Max lE(Z,,Iy,,,, cees Yor—is y).

Vn.l+l,;ml(.vu|. sy yH.I I'y); Vu+l.|.p+lngn_r-l(ylyuh "'yu.r'vl)dy'

For r =1, p < R and n < N the same form as the above holds, with a null argument list for
V,\, and using g,,(-) implied by (2) (from F,,(-) = F(-)) in place of g,,_{(-). When n = N,
this option must be accepted, and the expectation of its expected value after further sampling is
the current expected value. When p = R, either the current option or the (n + 1)-th (without
observation) has to be accepted. All these cases can be accounted for by the relationship (4) if
the following definitions are used as boundary conditions:

Voge=-—coforr>1landalln <N
Vitga = fm‘ dF(z) Auforalln < N
Vi, =n forallp < R +1

V\*,» p = —c0 for all p.

The recursive refationship (4) now holds for 1 K n S N, I < p <R 1K r<p-n,
and also defines the optimal policy which is to

(i) select option »if

E‘Z,,'_V,,h ret ym) > Vn,l+|,p+l(yul' e ynr) and VII+|.|.4!+|.*

(i) take another observation on nif

Vn.r+lAp+l(yn|' DR ynr) > E(anynh DRI ym) and Vn+|,l,p+|;

YOL. 28, NO. 3, SEPTEMBER 1981
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{iii) reject option n otherwise.

: Quite clearly any general solution to (4) would be very difficult, if not impossible, 10
S obtain in practice. Nevertheless, we obtain in the next section some general solution properties
which may be useful in specific cases. An actually soluble problem is presented in Section 4,

and the use of this result as a general rule is discussed.

‘ 3. GENERAL SGLUTION PROPERTIES

Two assumptions regarding the distributions F and ( will be invoked in this section at
various times. These assumptions are stated first.

- b o

ASSUMPTION (AT1): The distributions are such that

{ (i) given observations v,,, ..., v, . there exists a scalar-vatued sufficient statistic y,, for

i 2,

¢

} (ii) y, can be recursively generated (given a suitable definition of 7,9) as a function of
Yn.-1 and y,, which is nondecreasing in each of its arguments;

1 Gii) E1Z,1¥,]) is a nondecreasing function of ¥,,.

(1~ + ihe posterior probability, Pr(Y,, > y|¥,, ) is nondecreasing in ¥,, , for all y.

Assumptions (i) and (i) together imply that the dynamic programming recursion formu-
lae (4) requires only ¥,, as state variable, rather than the full observation vector. Assumptions
{iii) and (iv) are introduced in similar spirit to assumption 2" of MacQueen [4]. The require-
. ment is that the probability mass of the observations should follow the true underlying value.
L More specifically (iii) requires that posterior inferences on z, should in turn follow the observa-

1 tions, while conversely (iv) requires that posterior probability mass on future observations
4 should follow the inferred underlying value through the sufficient statistic y,,_;. Assumption
4 (iv) is, in a sense, analogous to the ‘increasing failure rate’ assumption of reliability theory. In
el our case, however, it simply implies that high observation values should not decrease the poste-
rior probability of future high observation vaiues (i.e., a form of consistency assumption).

In fact, (A1) may be expected to hold quite widely. It holds, for example, when
Z,~ N, D)and Y, — N(z,, &), in which case:

_ | &
" Y = = 2 Yy
b r =

.—‘;nl - {(r - l);n,l«l +ym}/r
V.0 = 0, say (arbitrarily)

and

r= 1Dy, clo?+7r)
- r - nr .
EZ..ly,., ‘02+r}y” Ym N{o’2+f—l ‘o.2+'.__] :
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The normal case also satisfies the second assumption below, which is really an extension of (iii)
and (iv) of (Al), now requiring a certain consistency between the probability mass of the
observations and the true value in the tails of the distributions as well.

_ ASSUMPTION (A2): (Al) holds, and for any € > O there exist y; and y, such that
{¥, < y,)and Y, > y,} have nonzero probability and for any m > n
) ¥, <y, implies
PrlZ, > z,1¥,] =fR, F,(z\y,)dF(z) > 1 - ¢

Gi) ¥, > v, implies
PI'[Z,,, > :n‘.vm] < €.
We now consider certain general properties of the solution. First, however, we prove the fol-
lowing lemma.
LEMMA: If (AD) holds, then V,, . (3,,.)) (= V, (. .... y,,-1), see comment after
assumption (Al)) is a nondecreasing function of y,, |, which is, furthermore, such that:
Dmp(.vu,r l) é [E lel.vlLl ll - Vmp(;ll.l |)
is a nonpositive, nondecreasing function of ¥,, ;. (Note that by virtue of (A1) (i), conditional
expectations depend only on y,, .)
PROOF: By assumptions (A1) (ii) and (A1) (iii) it follows that for given y,, = .
E[an.vu.r 1 yur] = E[Z,,'_‘}/-',,, (:‘—'u,: 1 .V)]

is a nondecreasing function of v,, ; and y.

The boundary conditions on V,, , imply that for any r(1 < r < R) and given y,, = y.
yarlng o) =yary, L y)
= E(Z\I¥\, | ¥l
while for n < N
Yok F, o») =MaxlELZ15, 5., 1w} ul.
(Here and elsewhere in the proof y,x(¥v,, 1. v) is a compressed form of v,z (3,7, 1. ¥))
and similarly for the other functions.)
Thus, for all n € Nand r < R and a given value for v, ¥,z (¥,,~1.») is non-decreasing
in ¥,,-1 and y. Now define v. ¥,,-; and v. Now define
8,0(F.. 1 MWAEZIY, 1 ¥} =y 1 »)
= Minl0: E{Z 15, (., 1. ) —ul.

Clearly, 8,4 (¥,, ). v) is also nondecreasing in ¥,, ; and v, and is nonposilive.

Now define the following probability density function on v.

g-;;_y l(,v,_égu_, I(."vl.vu,l \)
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OPTIMAL SELECTION FROM A RANDOM SEQUENCE WITH OBSERVATION ERRORS 399

with corresponding distribution function G,,,, 1{¥). This distribution is defined to be indepen-
dent of any perturbation of y,, | around the nominal value.

Since y () and 8(-) are nondecreasing in v,,_, for every y, it follows that their expecta-
tions with respect to the distribution defined by &,, ((-) are also nondecreasing in y,,_ ;. Thus,
defining for any y' . (not necessarily the nominal value y,, ):

l-/m‘R (y:),l‘l) é fR; ‘YNIR(.V!'I.I' s .V) 2::‘1 l(y)dy and
DIII'R(PI'I.I' l) 9_ fl{‘ 8ulI\’ (j;, By .V)éu.l I(.V)dy

we have forany h > O
l./m’R (-.V-IIJ } +h) IIIR(vH! |) 'HIR(FIII |) and

P
D.IIIR(-VH.I’( +h) />’ IIfR(v‘II l) =f aillRUHI Ie y)glll |(}IV“, ()dy
= Elzu‘yn.l l) - mR(.vn,i l)

DHIR (.vu.l |) .

Now consider the expectations of y,z (-, ) and 8,,(, ) when y has distribution function
wr=11Fn,—1 +4). By assumption (A1) (iv), if this distribution differs from G,,_,(»), the

difference is a shift in probability weight to higher values of y, and thus, since y,z(:. -} and

"} are nondecreasing in y, we have for 4 > 0:

3 VnrR (vn r~1 +h) 2 -mR (ynr 1 +h) mR (;n.r—l)

b}
nrR(Vnr-l +h) P nrR n.r‘) +h) z DnrR(;n.r—l)-

anrR(' '

Funhern‘lore taking expectations, it is also clear that D, ,(¥,, ;) inherits the nonpositivity of
8k Vs, ¥). The lemma thus holds for p = R. For other values of p, the V,, () values can
be obtaified by backward induction from the V,.x () computed above and from the boundary

condition:

V\!p:“" P<R+‘

We thus assume that the lemma holds for nr + 1, p + 1, ie.. that
D,, ., ,+i(¥,) are nondecreasing functions of ¥, and that:

Dnr*l ,ml(vm) g 0

Subtracting the expression for vy, (v,, ;. v) given by Equation (3) (where, as above,
. V., 1isreplaced by ¥,, and v, = y) from E{Z,[y,(¥,, |. v)], we have

8,,(F 1o V) =Minl0: ELZ 15,5, . D)=V, ,al@n G, )
E\Z\3,. G, . )~ Vit i peth
=Minl0. D,, . 7. G, .. vk
E{Z,[Pp Gt ) = Vst 1)

Since ¥,y .. is a constant not dependent on ¥,, , or y we have from (3) and the above, and
using (A1) i) and (Al) (i), that y,,,(7,, . ¥) and §,,(¥,, |, V) are nondecreasing func-
tions of v,, | and v, and that 8, ,(¥,, ,. ¥) is nonpositive. In the same way as above it can be
shown that V,, (¥,, () and D, . (v,, ) are nondecreasing in ¥,, , and that

Vl ' *l.p+l(‘vm') and

",

AT
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Dnrp@n.r—l) < 0. 1

Q The lemma follows by induction.

Lemma | may be seen to be a special case of a wider class of results derived by Topkis

[10], where conditions under which optimization problems yield solutions which are isotonic in

‘ a parameter are discussed. In the present case, however, not only is the direct proof relatively
: simple, but it directly yields the structure of the optimal policy. In fact, by the optimality prin-
: ciple of the last section, there is implicit in the proof also the demonstration of the following

- theorem.

F 1

wi THEOREM 1: If (A1) holds, then the optimal policy is defined by numbers u,,, and w,,,
. for all n, r, p such thai

j u/up = wm,n

_ (they may be equal), and

? (i) option nis rejected if y,, < u,,.

i (ii) option nis accepted if y,, > w,,,.

This is a result which is intuitively fairly obvious although diﬂigul( to prove, and it is simi-
lar in spirit to related results of Rosenfield [6] and MacQueen [4]. General conditions for the
optimality of structured classes of policies, such as that of Theorem I, have been derived by
Porteus {5]. Thus, as for Lemma 1, Theorem 1, is a special case of a more general result. Our

; I (iii) a further sample is taken otherwise.
!
j
i

) derivation has, however, allowed the specific form of structuring to be developed construc-
2y tively, and thus Theorem 1 is in a form suitable for direct practical implementation.

] This structure of the optimal policy is important for a number of reasons. Certainly it is
- easier 1o store u,,, and w,,, values than to store V), ,(-) for all values of its argument. In some
T cases it may even be possible to compute «,,, and w,, directly, although we have not found

such an example. Furthermore, once this structure of the optimal policy is known, various
heuristics_can be proposed for the problem, based on assumed or heuristically derived values
for the w,,, and w,, .

% .

We nowv. state and prove a further property of the optimal policy under the stronger
assumption (A2). This result is given here not only because it is an aid to intuitive under-
standing of the problem, but also because it may suggest heuristic derivations for the u,,, and
w,,,, above, based on approximations for V,, . (y,,. ).

THEOREM 2: If (A2) holds and ¥,, € ly,, v,] for all n and r (we may have y, = —co
and/or y, = o), then
lim anu(yu,r l) = Vn+l,|.p4|

LR R RY

lim Vm;: (.;H.I l) =E [E{Zn l.vur(vn./ 1 .vn/)”.vu.: - l]‘

‘Hl Al

(AR

(Note that, although the second expression above is in a rather cumbersome form, it is in most
practical applications quite easily evaluated).
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PROOF: By assumption, for small enough ¥,, | it will be optimal to reject option n
immediately, giving:

‘y'up()-’n.r—l- y) = VII+|,|.;A+|
for all y,, | and y, and the first limit holds.

Similarly, for large enough y,, |, option nis immediately accepted, giving

'Ymp@u.r---l-y) = E‘Zn U;u.r» 1 y}v
and the second limit follows. i

In this paper we have not attempted to develop any heuristics on the basis suggested
above. Rather, we introduce in the next section a particular case in which the exact solution
can be computed. Not only is this case of some interest in its own right, but it suggests
another heuristic approach for the general case. The results of a Monte Carlo study of the per-
formance of this heuristic are presented in Section 5.

4. BETA-DISTRIBUTED VALUES WITH BINOMIAL TRIALS

In this section we consider the case in which the Z, are independently distributed accord-
ing 10 a Beta distribution, with parameters « and 8, i.e., Z, € [0, 1] and F(-) has density:

o La+B) e
f(z) |'(u)l’(B)z (1~ ),

The observations Y,, are of a simple binomial success/failure form, with success probabil-
ity z,. This is a somewhat simplified model of many real situations in which z, represents, for
each option, a certain degree of satisfaction, and the y,, represent either a simple sampling
(e.g., defectives in a batch) or the results of expert opinions (each declaring the option ‘satis-
factory’ where z, is now the fraction of all experts who would find the option satisfactory).

Since y,, € 10, 1}, we can define

Y=o

r

j)-m =a + z _V,,, = .v”.l | + Yur+

=1

Then, a posteriori, the uncertainty in z, can also be represented by a Beta distribuiion with
parameters y,, and (@ + 8 +r — 3,), i.e.,

EZ,,I;,,, = .vur/(a + B + ’) = Pr( yn.r'ﬂ - ll.;m)'
Using the same boundary conditions as in Section 2, we thus have for n < N, r < p,p € R:

- .v -1 ;n.r—l +1 -
(5) Vnrp(yn.r—l) - ;-'—FE"TI—:—] lMax [;TB—‘F—I” vn.r+l.a+l(yn.r-l +1); Vu+|.l.p+l”

a+B+r— l—;n.rvl [M l ;n.r-l

a+B+r~l a+B+r; Vn.r+l,p+l(;n.r—l)'~ Vn+|.l.p+lll'
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Now because the state space of y,, is finite, i.e., ¥, € {0, 1, ... .r], it is in principle possible (0
compute V,,.,(¥,,.)) for all values of n, r, p, and y,, ;. This would be achieved by starting for
each n < N with each value of sin 1 £ s £ R — n, and then computing by a backward recur-
‘ sion for j=0,1,..., -1), V,, (v, ) where r=5s—, and p=R —j for ali
~ Vo, 1 €10, 1, ..., r = 1}. Note that in doing so we may discard all Vii+1.0+1() values after

i computing the V,, () values and storing the u,, and w, . values. Apart from this the only
other intermediate results requiring storage are the (R — n) values of V,,; | 41 (p=n +2,
n+3 ...,R+1). Thus, at most, 3(R — 1) intermediate storage positions are necessary.
Finally, the policy variables u,,, and w,,, must be stored, but this need not be in-core; approxi-
mately 2NR* values would be generated.

il ML e aw .

i
‘1 In order to achieve this computation, the following number of evaluations of (5) are
; required:
i . . 1
1 \LR e . IR (s 4+ 1)
; (S . j) = sis+ 1)
11 ;E \szl ;-zﬂ p=l a=| 2
‘.; 1 & [(R=mM(R-—n+DQR=2n+1) (R=)(R=n+1)
‘ “37 X 6 M 2
.l ne=|
B! A
: = 55 T RRR+D R+~ 20R +6R +Dn+6(R + D’ — 2],
S n=1
] . ’
. _RR+DR+DIN~-1D _ QBR+6R+2) (N - DN '
- 12 12 ]
N L REDN-DNQN-D _ NN-1)? R
% 12 24 ) E
) For moderate values of N and R (e.g., 10 and 10°, respectively,) this computation is indeed ;
k" quite feasible, since evaluation of (5) is extremely simple (three additions/subtractions, six

multiplications/divisions and four comparisons).

Mmoo

Although the solution is not very eleganl, its feasibility is of interest. In particular, we e
consider the case in which a = 8 =1, i.e., the case of uniform distribution on [0, 1]. For a
known distribution function G (-), Z, can always be transformed into a variable Z, which is uni-
formly distributed. Maximizing the expected value of the Z, chosen is equivalent to maximiz- ;
ing the fractile value of Z, and thus of Z, (which also minimizes the probability that one given i
later option will improve upon option n}. This is in fact a quite satisfying objective in the gen- 3
eral case (cf. the ‘uniform game,’ paragraph 5a of Gilbert and Mosteller {3]).

’..-.’-." ».'l
'ﬁ;..'n.utf.-,“ &
LT

Now if the Y, represent, as above, binomial trials on the uniformly distributed Z,, then

‘:! ~

any event of the form (Y, < &} is equivalent to the event {lestimated probatility that ;
3 Z, €z, forany given m > n] < &/(r +2)}. t
For general observations y,, on z, this probability can also be computed: it is in fact given f
‘3 by 7,, where s
K (6) T = J 1= FL I3, '
(It is easily confirmed that in the uniform/binomial case 3,, = y,,/(r + 2).) This suggests that a
heuristic policy may be defined by the following: where u,,, and w,,, are the critical values
computed in the binomial case and witha =8 = 1,
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(i)  option n is rejected if 9, < u,,,/(r +2);

(i) option n is accepted if 9,,> W,/ (r + 2);

i (iii) a further sample is taken otherwise.

S. MONTE CARLO RESULTS

: In order to test the heuristic suggested at the end of the last section, a series of Monte
' Carlo studies were performed. The example selected for these studies was chosen more to

! demonstrate performance under fairly extreme conditions than to represent any particular prac-
tical situation. We give first a description of this example.

S I

The values Z, are drawn from an inverse gamma distribution with shape parameter 3 and
scale parameter 1, i.e., if we define X, = 1/Z,, then the distribution of X, has density ¢(x):

AR 4

»

AR SRV Y VI

1 .
d(x) == xle .
2
The observations Y,, are drawn from the exponential distribution with mean Z,, i.e.,

gWlz,) = lexp(=y/z,)V z,.

NS
-

" A sufficient statistic for z, is thus

| _ r

' ylll = 2 ylll .
=1

i It is not difficult 1o show that (A1) (in fact (A2)) holds. The value of 7,, of the previous sec-
lion is easily obtained, although in a form slightly different from that of Equation (6). We note

= first that the posterior distribution of x, ( note, not z,) is also of the gamma form with density
» defined as ¢, (x) given by:

¢

i Gm+l)}+r x2+r exp[—@o:r+l)xl

.4 ¢Hl (X) = - -

! rG+r)
- q
4,;.‘; The probability that Z,, € z, for any given m > n, is equal to the corresponding probability
’ ; that X,, 2 x,. Conditional on x, (i.e., on z,) this probability is given by
%\;; Pr[Xm Z X:llxu = X,,] = I" ";—xze"‘dx = l + Xy + .;_xllzl exP(—xﬂ)'

Taking the expectation of this conditional probability with respect to the posterior distri-
bution for X, conditional on y,,, we obtain the required expression for 7, as follows:

- d (;,,,“’l)‘h' exP[—Gnr-'-z)x] 24r I+r 1 44
in =, TG+ R T b

_ | Put] e (43 L, B+n@+0n
yﬂl+2 ;!M +2 2@”1‘ +2)2

W.th these results the proposed heuristic can be applied.
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4 In the studies performed, R = 10N throughout. Now it is important to note that simply )
i 10 1ake 10 observations on each value, and 10 use the mean of these as the true value in one of .
t i standard models (as, for instance, in Gilbert and Mosteller [3]) can lead to substantial errors. '
i For example, around the mean value of X, (i.e., 3) the variance of the estimate of z, is i
= 0.03333, and the one standard deviation limits of this estimate is {0.1507; 0.5159]. In fact, this
' range within which the estimate is most likely to fall, covers approximately 65% of the probabil- A
ity mass of Z,. Thus, even if all N options could be seen simultaneously, in ordering the ,
options quite considerable errors could occur.
' 1
The Monte Carlo studies with the heuristic rule were carried out for four values of N, viz. }

4. 6, 8 and 10. In each case 1,000 sets of N values were generated by a standard pseudo-
random number generator. The cutoff points u,,, and w,, , had been computed previously and
stored. For each set the rule was applied, and the rank and value of z, for the option chosen
was recorded. In this way the following comparisons could be made with optimal performance
in perfect information models:

PP 3

. masida

e

(a) Mean fractile of the option selected (i.e., the expected probability that the chosen
option exceeds a random draw of Z,,. if Z, is transformed 10 a random variable, U,
‘ say, which is uniformly distributed on [0, 1] then this corresponds 10 EU, for the }
- option selected). The observed mean can be compared with the corresponding {
] optimal expected value without observation error ({3], Table 11). It may be recalled ]
i
f

that maximization of this value is the objective invoked as a basis for the heuristic.

(b) Frequency of selection of the best option. This can be compared with corresponding
' optimal probabilities in the standard cases with no observation error when the under-
lying distribution is either known ({3}, Equation (3c-1) and Tables 7 and 8) or unk-
nown {and ranking only is possible; [3] Table 2).

{c) Mean rank of the option chosen (where 1 = best). This can be compared with the

1 corresponding optimal expected rank, if ranking only is allowed ([1]. Equations (6)
-4 and (7).
. 4 These comparisons are shown in Table |
ad
,§-Z Clearly the heuristic rule compares well with optimal rules when there are no observation

58 errors. In particular, the rule performs substantially better than the optimal rules based on
error-free ranking of the options only. Of more importance, however, is the fact that perfor-
mance compares favourably with optimal rules based on full information on the underlying dis-

i tribution and perfect information on the values in hand. This advantage is particularly evident
for the mean fractile of the option chosen, the basic objective of the heuristic.

6. CONCLUDING COMMENTS

We have introduced a class of sequential decision problems which generalize the "secre-

‘ tary" or "dowry” problems. Apart from general solution properties, an exact solution has been
f found in principle for a particular case. What is more important, it has been shown that the
* solution in this case can form the basis of heuristic rule for more general situations, which rule
has been validated by means of a Monte Carlo study. Admittedly, the rule is computationally

convenient only for rather smail numbers of options, but it must be noted that the motivating
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TABLE 1 — Comparison of Performance of the Heuristic Rule and Optimal
Performance with Error-Free Information

Number of options (N)

4 6 8 10
Mean fractile of the option
selected:
estimate, case H 0,727 0,786 0,818 0,853

(standard deviation of estimate) { (0,007) (0,006) (0,006) (0.005)
optimal expected value,
case O, 0,742 0,800 0.836 0.861

Probability of selecting
the best option:

observed frequency, case H 0,607 0.580 0,516 0.526
(estimated standard deviation of

frequency) (0,015  (0,016) (0,016) (0,016)
optimal probability, case O, 0,655 0,629 0.616 0,609
optimal probability, case O, 0,458 0,428 0.410 0,399

Mean rank of option
selected:

estimate, case H 1,587 1,734 1.921 1,989
(standard deviatioi of estimate) | (0,027) (0.035) (0.043) (0,049

optimal expected rank,
case O, 1,875 2,217 2,400 2,558

Case H heuristic rule of Section 4, estimates based on the Monte Carlo study
Case O, optimal rule given perfect information on values drawn [rom o known distribution
Case O opumal rule given perfect information only on ranks of the observed options

examples in the introduction (in which costly examination of each option is required) will gen-
erally involve rather few options. In these cases the model and solution would appear to have
some applicability.
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INTRODUCTION

In this paper we present a differential equation model used to explore optimal search stra-
tegies in an environment which involves:

1

2,
3.
4
5

A wide range of target types exhibit characteristics similar to some or all of the above. This
research evolved initially from research into crimes but has application 1o the following target
types, a) smugglers, b) terrorists, ¢) transiting submarines, d) infiltrating enemy forces and e)
groups of attacking aircraft.

After a brief literature review (see [13], [15], and [17] for more extensive reviews), we
introduce the basic differential equation mode! and apply it to a series of increasingly more
complex problems. The analysis considers only cyclical search strategies and focuses on the two
region problem. Our goals are: (1) to determine the optimal cyclical strategy, and (2) to
develop simple analytic expressions for when a region should be excluded from search.
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A DIFFERENTIAL EQUATION MODEL OF SEARCH
FOR RANDOMLY ARRIVING AND DEPARTING TARGETS
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ABSTRACT

In this paper we analyze oplimal search strategies in an environment in
which muliiple. independent targets arrive and depart at random. The analysis
revolves around a continuous time differential equation mode] which captures
the time dependent nature of the search process. We explore the impact on
optimal strategies of nonzero travel times between regions as well as differing
target arrival rates. We derive simple closed form expressions for determining
if only one region should be searched.

. multiple independent targets

random arrival of targets

random departure of targets

. different target types (mean duration)

. time lost in travel between noncontiguous regions.
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The problems we address are as follows:

(1) Two regions with equal target arrival rates, no time lost in travel between regions.

We determine for this problem the optimal cycle length and the magnitude of the impact of
using optimal search strategies.

(2) Two regions with equal target arrival rates, fime lost in travel between regions.

For this problem we again determine the optimal cycle length and also develop an analytic
expression for when to search only one region. This expression is a function of the travel time,
and the departure and detection rates of the targets, but not the arrival rate.

(3) Two regions with unequal target arrival rates, no rime lost in travel between regions.

We determine optimal cyclical policies and an analytic expression for when to search only the
high target region which is a function of only the ratio of the departure to the detection rate.
In addition, we explore the impact of constraining the minimum time to search a region.

In all of the above examples we consider only a single target type and only two regions.
We close with a brief discussion of:

(4) Two regions with multiple target types.
(5) More than two regions.

Throughout the paper we evaluate the limiting properties of many of the equations and,
for example, study the impact of infinitesimally short cycle times. Although these cycle lengths
are not achievable in the real world, the results provide important bounds on the difference
between optimal and nonoptimal strategies.

1. LITERATURE REVIEW

The pioneering work by Koopman [9}, [10], and [11], along with the work in the discrete
analog by Charnes and Cooper 3], has laid the foundation for the continuing expansion of
search theory. The later work which is most directly applicable to our area are those papers
which explore the sequencing of search effort. Blackman and Proschan {2] analyzed the optimal
sequencing of search effort among a series of regions into which targets arrive randomly. Gil-
bert (6], and later, Kisi [8] analyzed a two-box search problem with the objective to minimize
the expected time until detection. However, their work is not extendable to situations with
departing targets [4]. Moore [14] analyzed the search for one randomly arriving and departing
target in n regions solely from the perspective of how much search effort to allocate to each
region, but not the sequencing problem. The paper closest in orientation to this work is that of
Barnett {1]. In his problem, targets arrive in a Poisson process and survive for a random dura-
tion. Barnett, in considering a discretized search, (1) proves optimal strategies are cyclical, a
fact we use in applying the differential equation model, (2) finds, analytically, the optimal
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sequence of search, and (3) generates a sufficient condition for excluding regions from the
optimal search strategy. We develop analogous results while introducing a more flexible con-
tinuous search problem which allows for travel time between regions and the possibility of
searching a region and not discovering a target that is actually present.

2. DIFFERENTIAL EQUATION MODEL

The model consists of iwo differential equations for each region, one to describe the sys-
tem when no search is in progress in that region, the other to describe the system when a
search is in progress.

Let § = the state of the system (expected value of the number of targets present).

A = the rate at which targets arrive (assumed independent of the state of the system).

Targets depart from the system in either one of two ways. Either targets leave because they
have finished their task or because they have been intercepted during a period of search.

F = the constant of proportionality for the rate at which targets finish their tasks. (This
will depend upon the duration of their task.)

[ = the constant of proportionality for the target interception rate. (This will depend on
the size of the region and the observability of the target.)

Using the above parameters (S, 4, F, /), we can write the following equations to

describe the changing system. During a period of no search, the system is described by
(1) B s ed-Fs
dr

The equation states that the system is changing because targets are arriving at a rate 4 and are
departing, as a result of finishing, at a rate FS, proportional to the state of the system. The
solution of the differential equation is

(2) S = C,exp(—F1) + A/F.
A/ F represents the steady state number of targets if no search were carried out.

During a period of search, the equation becomes

3) ifdﬁ-A—(ru)s

whose solution is
(4) S=Cyexp(~(F+ D0+ A/(F+ D).

A/(F + 1) is the steady state number of targets during an unending period of search.

These equations assume that the arrival process of targets is Poisson and that the duration
of a target’s presence is exponentially distributed. S is therefore the expecred value of the
number of targets. This can be shown by setting up queueing type equations for the probabili-
ties P,, where nis the number of targets present at any one time.
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3. TWO REGIONS—~EQUAL TARGET ARRIVAL RATES—-NO
TIME LOST IN TRANSFER

The first problem to which we apply the differential equation involves two identical
regions. For now we will focus on the optimal cycle length and consider only equal allocations
of search effort to the two regions; later, we will show that in fact the global optimal strategy is
symmetric. In addition, we will consider only simple cyclical strategies of the form X minutes
of search in R1, followed by X minutes in R2 and then back to R1 for X minutes, and so on.
This second assumption is motivated by a number of earlier search theotry papers {1, 6, 8] in
which the optimal search strategies were cyclical.

Our objective will be to minimize the total average expected number of targets in the
combined regions. However, because the regions generate independent target arrivals and
departures, they will be treated separately as experiencing alternating periods of search and no
search. In addressing this problem we will, in addition, answer simultaneously the following

question:

Given that a searcher is unavaifable 50% of the time, what is the distinction between short
numerous intervals of search and a few long intervals of search?

The three steps common to this and the later examples are outlined as follows:

1. Two differential equations are defined for each region. One to describe the dynamics
of the region while it is being searched, the other to describe the region while no
search is going on.

2. For each region, two boundary conditions of the following form are established. The
target level in each region at the end of a period of search must equal the level at the
beginning of a period of no search and vice versa. These conditions are simply a
continuity constraint on S, the number of targets present, not allowing discrete shifts
in the values of S as a result of the searcher entering or departing a region. Once the
boundary conditions are defined, each of the constants in the differential equations is
determined.

3. The average target level, S, in the total area is calculated by integrating each of the
four equations over its respective period of search or no search, summing the four
values and dividing by the cycle length. The resultant expression for S is a function
of the parameters of interest in each of the particular examples and is subsequently
analyzed to determine an optimal strategy.

In both regions, R1 and R2, the two equations describing the periods of search and no
search are just the previously defined Equations (1) and (3) and whose solution are Equations
(2) and (4).

The continuity constrainton § is used to generate the following equation:
(5) Cyexp(—=(F+ DX)+ A/(F+ 1) = C,+ A/F.
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J The left-hand side represents the end of a search period of duration X minutes and the right-
i hand side the beginning of a no-search period. A second analogous equation can be set up for
the end of a period of no search and the beginning of a period of search. These equations are
then solved 10 find C, and C, as functions of X. The expected target level in each of the
regions at any instant in time can now be written as an integral function of only one parameter,
X, the half-cycle length, which yields

(6) S1=—(C,/QFX)) x (1 —exp(~FX)) + A/2F
~(CH/AUF + DX)) x (} —exp(—(F+ DX) + AJ2(F + I).

The average for the entire region, S, is merely twice that of any individual region.

e U S

S P N

With some algebraic manipulation of the derivative, we have proved [4] that § increases
monotonically as X increases. In other words, the average expected target level in each region
decreases as the frequency of transfers between the two regions increases. This result is
directly comparable to that of Gilbert {6]. This result also implies that if search were scheduled
in long blocks of time (i.e., increase X), and no penalties were incurred for switching from
search to no search the model predicts a decrease in the probability of interception.

Magnitude of Impact of Short Cycles

To determine the magnitude of improvement produced by the shorter cycles, we deter-
mined the average number of targets present as the cycle length, X, approaches infinity.

%)) SU=1/2(4/F) + Y2A4/(F+ D)) = AQF + DJ2F(F+ D

For short cycles as X approaches zero, Equation (6) becomes 24/(2F + I) and thus the reduc-
tion of the average target level for short cycles as compared to long cycles is

8) 1/QF/T+ 12

This expression, not surprisingly, does not depend on the arrival rate, 4, and depends only on
the ratio of the departure rate, F, to the interception rate, /. Thus, for example, if the depar-
ture and detection rates were equal, infinitesimally short cycles would reduce the target level by
1/9 as compared 10 long cycles. Table 1 summarizes the reduction for a range of ratios. As the
departure rate grows (shorter mean duration) relative to the interception rate, the impact of
shorter cycles decreases rapidly.

If, as an alternative, we measure the relative impact of long and short cycles against a no
search policy then the reduction due to infinitely long searches is //2(F + I) and for short
cycles it is //(2F + ). If, for example, / = F then short cycles reduce the target level by 1/3
more than long cycles. The probability of interception under each policy is directly related to
this proportional reduction in target level. For infinitely long cycles the fraction of targets inter-
cepted while searching is just //(F + I) but we search only half of the time, (//2(F + I).

For infinitesimally short cycles during any target’s lifetime, the searcher and target will be
in the same region half of the time. Consequently, the probability of interception is

9 fo Fexp(—=Fr) x (1 —~ exp(—11/2)) dt.

This yields [//(2F + 1)), which represents the reduction in target level for infinitesimally short
cycles.
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; TABLE | — 4 Comparison of Short and Long Cycles With
i Regard 1o Interception Probabilities and the
~ Average Expected Number of Targets Present
Reduction in
R=FIi Target Level Probability of Interception i
Due to Short Cycles 3
) 1 — 8/S, Short Cycles | Long Cycles s
; 1 A1 333 250
] 2 040 .200 167
; 3 020 143 125 A
4 4 0123 111 100 {
L 3 5 .0083 091 083 !
. i 10 .0023 .0476 .0455
3 20 00059 0244 0238
! i 30 .00027 0164 0161
40 00015 0123 0122
a 50 000098 .0099 .0098
] 4. TWO REGIONS - EQUAL - TARGET RATES - TIME LOST IN TRANSFER
1
z In this section we modify the previous example by introducing a parameter L, which
' represents the time lost from search while traveling between the two regions. We will use the
~ differential equation model to address two questions.
. 1.  What is the optimal value of X, the time spent in R1 before switching to R2? The
f e optimal value is obviously no longer infinitesimal.
o 2. Is there a simple analytic expression which specifies for which values of L it does not
" 1 even pay 1o switch regions?
% In tackling the problem with the differential equation model, we will again assume a cycli-
F cal strategy (both Kisi [8] and Gilbert [6] have cyclic strategies) and that the search effort will
‘&l be divided equally between the two regions.

The key to our analysis is that optimal solutions which limit the search to only one region
will appear in the analysis as solutions in which the optimal value of X is infinite.

In this second problem, which ascribes a penalty for switching regions, the basic equations
which describe the periods of search and no search do not vary from those of the previous
example (Equations 2 and 4). The introduction of the switching time, L, does affect the con-
tlinuity boundary conditions and changes C; and C; since a no search period in each region has
a duration of ‘X + 2L’ minutes. The average S1 is calculated as in Equation (6) except that
the no search time period extends over a time period of X + 2L minutes and that the cycle
length is now 2X + 2L. The resultant expression is

(10) ST=A/F - [AIX/2(X + LYF(F + D1 + [4/2(X + )]

2—exp(—(/ + F)X) —exp(—(X + 2L)F)
exp(—QF + DX - 2FL) -1

x [I/F(F+ D1 x|t +
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‘ Once values have been assigned to F, / and L, this equation is a function of only one vari-
- d able, X, whose optimum is easily determined. In Figure [ the optimum value of X is shown for
, a range of L, Fand R, where R is the ratio of F, the departure rate, to /, the interception rate.
There are graphs for two values of F, one for F equal to 20—targets last an average of three
v minutes—and one for F equal to 10, with R as high as 20, and as tow as .0}, which would mean
| ‘ that targets are intercepted at a rate one hundred times as fast as they depart on their own. The
lower values for R were included less for realism than to display how the curves behave as R

approaches the limit of zero.

L

R= 2010 5 2 1 5 A .01
) X 44
1
y 3t F=20 perhr
f 2] R=F1
3 i
. -; Y v Y v T -~ :
k 6 1.2 18 24 30 36 minutes L 11
¢ :
3! R=20 1u ; 2 1 < :
» /
: f=10 perhr
) ! R=F |
1
4 .01
’ -‘ L] L T T 1 T aJ
\ 6 12 18 24 30 3.6 4.2 minutes L
-, FiGURE 1. Optimal value of X as a function of L i
’ “ The most striking characteristic of these curves is their asymptotic nature and the location
- § of the asymptote.
%
b4 The asymptote is always less than the mean duration of the target, 1/F, and approaches 1
. the mean duration as R approaches 0. In addition, for a given value of L as the ratio, R, '
decreases, the optimum X also decreases; as F decreases (from 20 to 10) the value of the :
” asymptote for a given R increases. :
All of the above points will be addressed more formally in the succeeding section in which an
b analytic expression for the asymptote as a function of Fand R is derived.

When to Search Only One Region

g

The development of an analytic expression for the asymptote as a function of #and R
- builds on the observation that S1, the average target level will either be (1) a monotonically
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bl

decreasing function of X, or (2) a unimodal function. We have no formal proof of this but
extensive computer analysis of S1 for a wide range of values of F, R and X supports this claim.
In both cases the limiting value as X tends to infinity is the same. Because of the complexity of
the derivative, we found that the simplest way to determine monotonicity was to explore the
limiting behavior of the derivative. If the derivative approached zero from the negative direc-
tion as X increased to infinity then the function was monotonic and the optimal strategy was to
search only one region. It can be shown that after excluding all components of the derivative
which approach zero faster than 1/(X + L)? and consider only the direction of the derivative,
we find the expression of interest to be

el

e

2 -1 N U P — exp (= ]
. (an tim - L - L x[l L2~ expt-t + FIx) -~ exp-FOL +x>)] A
3 with D = exp(~2F(X + L)~ IX) - 1. y
j Its limit is ')
;i (12) ~L—I/FU+F) +2/FU +F) =— L+ [I/F] x W/(F/D) + D).
' '_i This will be negative and thus the optimal value of X infinite whenever
= (13) L > [/F1 x W/WF/D + DL
] This confirms our earlier graphical analysis. The second component [1/((F/1) + 1}] is

always less than 1 and approaches 1 when R, the ratio of F to [/, approaches 0. Thus, the
. asymptote for each curve in Figure 1 is less than the mean target duration, 1/F, and approaches
r.-! the mean target duration as R approaches 0. Of perhaps greater significance is that even if L is
? orders of magnitude shorter than the mean duration, the optimal strategy might be to search
only one region. For example, assume targets depart at nine times the rate they are detected.
If the travel time is more than one-tenth the average duration of a target (e.g., 12 seconds for
two minute targets, 18 seconds for three minute ones), the optimal strategy is to search only
one region.

5. DIFFERING TARGET ARRIVAL RATES

The final example involves two regions, RH and RL. In RL targets arrive at a rate 4 and
in RH, the high target region, targets arrive at a rate M X A4, with M greater than 1. In both
regions all targets have the same departure and interception rates, F and /, respectively. Once
again, our analysis will revolve about cyclic policies, this time of the form, X minutes in RL
followed by K x X minutes in RH.

Although one problem of interest is the finding of the (K, X) pair which minimizes the
average expected number of targets in progress, the discussion will not be limited to that, since
in all instances the optimum is approached as X tends towards zero, an unimplementable
optimum. Therefore, the development will also address the issue of the optimum value of K
for a given value of X. Setting X to be a specified value is interpretable as establishing a feasi-
bility constraint on the search process in RL. We have not constrained K to be greater than 1.
If K is less than one, less search time is spent in the high target region.

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. ). SEPTEMBER (984

N ~

. 0 L RN e Vi ..m(&ngﬁb..m YT IRC ST YT ST NP :
M, AR, - s -




[ S

AL SRV S

L
.

IR A

SEARCH FOR RANDOMLY ARRIVING AND DEPARTING TARGETS 415
The discussion that will follow, then, can be categorized briefly as:

1. A single expression is developed to be used in obtaining the optimal value of K for a
given X.

2. An analytic expression is found for the optimal K value as X approaches zero.

3. Evolving directly from 2, is an expression for identifying values of M for which the
optimal K value is infinite for all values of X. (if the optimal K value is infinite then
the optimal strategy limits search to the high target region.)

4. Lastly, an expression is found which specifies the values of X, as a function of M, F,
and /, for which the optimal K is again infinite.

In this example, the regions are not symmetric and separate differential equations are
needed for each region. The equations for the expected number of targets in the low target
region are the same as before, Equations (2) and (4). The differential equations for the high
target region and their solutions are also basically the same as before except for replacing A, the
arrival rate, by M x A. We then set up the standard boundary conditions which constrain the
target level to be continuous and solve for their constants, C;, C,, C;, and C,. In this case a
cycle consists of KX minutes of search in RH followed by X minutes of search in RL.

The average expected number of targets present in the combined two-region area is then
determined with the following equation

- 1 KX
(14) S= m 0 (C, exp{~Fr) + A/F

+Ciexp(—(F + 1) + MA/U + F)ldr

mf [C; exp(—(F + D)

+ A/{1 + F) + C; exp(=Ft) + MA/Flar.

The first integral represents the average number of targets in both regions during the
search (KX minutes) of RH and the second, the average during the search of RL. After
integrating out, substituting where necessary, and combining terms wherever possible, the

result is

S MA A Al(M - 1) 1 Al?
(5) S=F+i T FTKAOFE+D K+ DX [rz(r+1)z
« [ MQ - exp(—FX)) (1 — exp(=(F + )KX))

1 — exp(—=(F(K + 1) + IK)X)

(I — exp{—FKX)) (1 — exp(—(F + 1) X))
I ~exp(—(F(K + 1+ DX) )
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J Our unalysis of this expression is delayed until later; for now we present just a graphical
} | ansivais. In Figures 2 and 3 we have graphed the optimal value of K as a function of X, the
; duration of a visit 10 RL. In each case targets are of a 5 minute duration, F = 12. Figure 3 }
~ graphs the relationship for u range of M (the ratio of high to low region target rates) with the

ratin b to Jsetat 1A common characteristic of the curves, except for the M equal (o one

curve, is that as X increases, the optimal K value grows asymplotically to infinity (i.e., search

ouly one region? Not surprisingly. as M increases the asymptote decreases. As the difference

g in targel arrival rates increases, the optimal strategy is more and more likely to focus only on
the high targel region.

i
4 M=2 15 1.2 3
{ !
! K
3 ,
3 5 ,
'~i .
o i
. 25
| -
| \\\\
; 10 ™ "~~\ 3
-. 1 2 3 4 X
-4
. Figewe 20 The optimal value of A as a function for a range of M values
T R=4 3 2 1
K
5 e
254
10
t + -+ +
1 2 3 4 hrs X

FiGtee 3 The optimal value of K as a function of X for a range of values of R
IYigurc 3 graphs K as a function of X for a range of R with M set at 1.2. As R increases,

the cutoft value of X, above which only RH is searched, decreases. For R = 1 the cutoff value
of X is approximately .43 hours and as R increases to 4 this becomes .18 hours.
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SEARCH FOR RANDOMLY ARRIVING AND DEPARTING TARGETS 7

One characteristic of the curves that seems counterintuitive is that as X increascs initially,
the optimal value of K decreases. A corollary of this is that the optimal strategy within the
constraints we have imposed may allocate less than half the search effort 10 the high target

region. For identical regions the optimal strategy divides the search equally only in the limit as
X goes to zero.

There seem to be two conflicting forces at work. The more intuitive one is that as A
increases the searcher is forced to incur increased diminishing return in any visit to the low tar-
get region and eventually the cost for visiting the region RL becomes so prohibitive that it no
longer pays to search the region. This force dominates in the long run. However, there is an
advantage, in general, to having short cycles and as X increases from 0 there is only one way ol
restraining the increase in cycle length and that is by decreasing K. This propensity for shorter
cycles seems to dominate the behavior of the optimal value of K for small values of X turning
K optimal initially into a decreasing function of X.

No Constraint on the Duration of a Search

In this section we focus on the limiting behavior of S as X approaches zero ti.e.. no con-
straint on the minimum duration of a visit to a region). Although as X approaches zero the
optimal solutions are no longer implementable, the analysis of the limit properties will prove
significant, because the absolute minimum of § is always approached as X goes to zero. The
limit of S as X approaches zero is

- MA A AIM Al
(i6) S = F Y F T F+ DK+ +IK  FER+ DT

The optimal value of K is

. +2R(R +1) (M =D + 20R + )M
17 K D=
an (optimal) 2(R + 1)? — 2MR’

where R = F/I. It is again clear that the optimal value for K does not depend upon the
independent values of Fand / but only on their ratio, thereby reducing, once again. the number
of critical parameters. Table 2 displays the optimal K for a range of M and K. For M equal to
one, which means that the two regions generate targets at the same rate, the optimal value of K

does not depend upon R but is always one (i.e., equal search in both regions). as was assumed
earlier in this paper.

One aspect of the Equation (17) that needs clarification is that since there are two solu-
tions is it possible for both solutions 10 be positive? As it turns out, this can never happen.
For the range of M which results in both values of the numerator being positive, the
corresponding denominator will be negative. If the numerator is negative the denominator is

positive. This last result provides the key to finding under what conditions the optimal solution
is to search only one region.

Search Only One Region

Whenever both solutions are negative, for M greater than one, the optimal solution will
be at the upper bound of the feasible region, namely K optimal will be infinite (i.e.. search oniy
one region). Consequently, the optimal search focuses on only one region whenever
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TABLE 2 — The Optimal Value of K as a Function of M and R — No
Constraint on Minimum Duration of a Visit to RL (X — ()

R
| M Nl 5 I 2 5 10 20 30 | 40
| 1 1 1 | 1 | | 1 |
1.1 1.06 1.10 [.15 1.27 1.71 300 850 | o oo
1.2 1.12 1.20 1.32 1.59 3.01 45.0 oo ) )
1.3 1.17 1.30 1.49 1.97 6.16 ) oo oo oo
1.4 1.22 1.40 1.67 245 | 250 oo oo oo oo
1.5 1.28 1.51 1.87 3.04 oo oo oo oo oo
2 1.52 2.05 3.12 13.1 oo oo co co )
25 1.74 2.64 5.16 oo oo oo oo oo o0
3 1.95 3.31 9.20 oo oo oo oo oo oo
35 2.15 4.09 21.2 oo oo oo oo oo )
4 2.33 5.00 oo oo ©o oo oo oo oo

2
(18) M> —(’iﬁz——”—.

To be rigorous, we showed only that in the limit as X approaches zero that the inequality
specifies whether or not the low target region should be searched. However, if it does not pay
to ever search the low target region for an infinitesimally short duration there should be no
incentive to search it if the minimum duration of a visit is instead some number larger than
zero.

In order to emphasize the impact of this result we display in Figure 4 the convex region in
R, M space for which the optimal strategy limits the search to RH. For example, if R, the ratio
of departure to interception, were 10 then if RH generated 21 percent more targets than RL,
only RH would be searched. If R is 20, 30, or 40, then if RH generated respectively 10%, 7%,
or 5% more targets than RL, only the high target region should be searched. The result is a
second strong limitation on the likelihood of searching more than one region.

In the preceding analysis, we showed that for given values of F and /, if the ratio of target
arrival rates is above some cutoff value, M, the optimal strategy is to search only RH even for
infinitesimally small values of X. However, even for values of M below the cutoff if X, the
time to search RL, is ‘too large,” the optimal strategy will again restrict the search to RH.
Therefore, the next question 1o resolve is, "When is X too large?"

In Equation (15) only two components are functions of K, with only the negative com-
ponent a function also of X. The two components are

(19) - [AI(M— 1)

K+1 F(F+ 1D
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SEARCH ONLY
HIGH TARGET
REGION

FIGURE 4. A characterization of when to search only high target
region as a function of two parameters

v

03 2 5 o 15 20 2,
and
(20) ~1 Al = oxnf— ( — exp(=(F + 1)KX))
K+1 | ¥PGF | MU~ o) x G C R K + 1 + DA

(1 — exp(— FKX))
AQ-exp—(F(K+D+ DX |

+ (1 —exp(~=(F+ NX)) x

If for some value of X the magnitude of the first component were greater than that of the
second for all values of K, then their sum would always be positive. The optimal strategy then
would be to allow K to go to infinity, since that would drive each component to zero.

In comparing their relative magnitudes, we ignore the common factor 1/(K + 1); this
turns the second expression into a monotonically increasing function of K. Its limir, as K
grows without bound, is

Al
XFX(F +1)?
The problem therefore reduces to finding values of X such that

/ .
(22) X2z M=DFFTD x [M( —exp(—=FX)) + 1 — exp(=(F + 7} X)i.

21 x [M(1 — exp(~FX)) + 1 — exp(—(F + N X)].

In Figure 5 we have graphed the lower bound on X for a range of M values with 7 and /
set equal 10 1. A conservative (sufficient but not necessary) bound on X can be easilv found
since [1 — exp(—FX)] and [1 ~ exp(—(F + 1) X)] are both bounded by i. This bound is
M+ 1 x !

M-1  F(F+1D
which approaches the actual bound as M approaches 1. See Figure 5 for a comparison with the
actual lower limits.

(23) X >
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;‘.,i 6. EXTENSIONS AND SUMMARY :

i Multiple Target Types i

In order 10 inclue the multiple target types in the model, it is necessary to add for each
o target 1ype different values of / and F and a pair of differential equations for each region. To
] calculate the state of the system, S, under a particular search strategy, each of the targets is ini-
. tially treated separately. The total average number of targets in progress is then just the sum of
- all the individual averages. The resultant expression is still a function of only X or K and X,
T and can be analyzed in the same manner as before. To illustrate this without going into much
detail, we generalize our earlier results which characterize when to search only one region.

R The first expression we derived involves two identical regions with time lost, L, in travel-
" ing between the regions. We associate with each target type, j, three parameters, /;, F,, and 4,

the target specific interception rate, departure rate and arrival rate, respectively. The resultant
expression for L is now
F(F + I, )

2,4
/,
EA [F,(F, +1)

which unlike the earlier expression (13) does depend upon the arrival rates.

rs

1,

‘ .
R VI

(24) L2

SR o

The last two expressions, one for M, the other for X, relate to the problem of allocating
scarch between a high and low target region. When we generalized this problem and allowed
for multiple target types, we also indexed the ratio of the two region target arrival rates, M;,
and made it target type specific. The expression which cotresponds to Equation (18) and
specifies when to search only the high target region even for small values of X is

(25) 3 M, | ):

1

Rsand

‘.ot

i A%

(F«&—I)2

If the above inequality is not satisfied, large values of X will still restrict search to the high
target region. The conservative form of this equation with multiple target types is
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More Than Two Regions

Introducing more than two regions into the problem, significantly increases the complexity
of analysis. Although any of the earlier three inequalities can be applied pairwise to all the
regions to exclude as many as possible, the complications enter when more than iwo regions dre
still left. The heart of the problem lies in the difficulty of defining cycle types 10 be anaiy/ec.
The work by Barnett [1} which tackles problems involving more than iwo regions can vield ne
insight here. In his work any search of a region discovers all targets present with probabitit; i
The consequence of this is that after one unit of search in a region, diminishing return fiom a
continuous search stops, which is not the case here.

" . X : . . Y ST N e o r'\.%‘?wﬁmmu—ﬁm
o
N
’ l SEARCH FOR RANDOMLY ARRIVING AND DEPARTING 1 ARGE TS 421
ALNM, + 1)

Summary

In this paper a differential equation model of a search process was developed which has
the potential for capturing the dynamics of a sequential cyclic search strategy. In displaying the
application of the model to a number of examples, we have derived a number of independent
quantifiable constraints which limit the number of regions to be searched and which are sum-
marized in Table 3. The main thrust of all our results strongly emphasize that with randomly J
arriving and departing targets and travel times, search should be limited tn o.alv <t bche,: var- ]
get region,

TABLE 3 — Summary of Conditions Unaer Which
Only One Region is Searched

Single Target Type Multiple Target Types
1 2’ {I‘ (F, +1
l : - L2
Fx(F+Dh+1nD !
Z’ A i (f, + /)
. 2 Al Al
N ,M 2 (R + I) z L} ; 2 z l’l
. R’ » (F, + 1)} = F
¥
%
£ 5 ATHM, + 1)
IS F(F +1)
T X > M+ 1 % .l X > ' ' '
4 M- F(F+ 1) ZA,I,(M,—I)
i = FXF, + 1)
¢
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b OPTIMAL STOPPING PROBLEMS FOR DIFFERENTIAL
- EQUATIONS PERTURBED BY A POISSON PROCESS

i K. H. Wickwire

Lincoln Laboratory
Massachusetts Institute of Technology
Lexington, Massachusetts

[ S

ABSTRACT

We investigate a class of optimal stopping problems for dynamical systems described
by one-dimensional differential equations with an additive Poisson disturbance. The rate
of the disturbance may depend upon the current stale of the system. A dynamic pro-
. i gramming equation for the optimal stopping cost is derived along with conditions which
. must be met al the boundary of the optimal stopping set. These boundary conditions
depend upon whether or not the stopping set may be entered by smooth motion.

K Wi

e

1. INTRODUCTION

Differential equations driven by Poisson disturbance terms appear in models of the con-

tents of dams and inventories (Prabhu [71), viral growth (Bartoszynski {1]), population dynam-

ics in random environments (Hanson and Tuckwell [6]), collective risk (Biihimann {2]),

machine failure (Wickwire [11]), and mass service systems (Prabhu [8]), among others. In

some of these models the magnitudes of the disturbances are random variables (the disturbance

term is a compound Poisson process), and in others the disturbances have constant magnitude;

the latter case is often a useful approximation to the former, and its mathematical treatment via

the theory of retarded differential equations differs significantly from the more general approach

taken for distributed magnitudes. Many of these models describe changes in resources or popu-

lations which lend themselves in a natural way to the application of control theory: dam con-

tents, insurance reserves, and inventories must satisfy demands but not be depleted. Queueing

systems should serve as many customers as possible consistent with running costs, latent

machine failures ought to be detected early without a large number of false alarms, and malig-

nant viral growth must be checked at acceptable costs for treatment. In this paper we shall

assume that Poisson disturbances of a one-dimension. ‘vnamical system are of constant mag-

. nitude and shall aiso suppose that the allowal® ontr... actiors, at any time, are of a simple
. type: one may either stop the system and gain. - - aich depends upon the current value
of the system, or let it continue to evolve (in tae hop. thai the reward, at a subsequent time,
f will be greater than its current value). Such problems are called optimal stopping problems and
their general theory has recently attracted much attvention (see Chow, Robbins and Siegmund

[3] for the case of stopped random sequences and Siryaev [9] for the case of stopped Markov

sequences and random processes). A treatment of optimal stopping problems which can be

¥ applied to mixed Markov processes (that is, those whose sample paths have jumps superim-
posed on continuous movement) has been given by Grigelionis [5], but his most important
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result, the derivation of conditions satisfied by the payoff function at an optimal stoping boun-
dary, does not, apparently, include the case of a process which can cross such a boundary only
by means of a jump. We shall derive here a set of conditions satisfied by the payoff and
optimal stopping boundary which applies to both smooth and discontinuous entry into the set of
states at which stopping is optimal. We shall limit ourselves to autonomous dynamics defined
on a finite interval, because this case exhibits the essential features of a wider class of prob-
lemms. We remark that optimality conditions for problems with control actions more general
than those considered here—actions which alter paths without stopping them—may often be
derived in an analogous way.

2. FORMULATION OF THE STOPPING PROBLEM

Let {x,), £ = 0, be a completely observable Markov process on the probability space
|E. #. P}, where E C R'. Since we shall consider £ in what foliows to be a finite interval, no
generality is lost by taking E = [0, £]), £ < oo, and we shal} do so. Suppose that x, satisfies the
stochastic differential equation (Gihman and Skorohod [4])

(1) dx, = a(x,)dt +fR|B(x,. wINdL, du), x4= x,

where a (+) is continuous on E and nonzero on £ — ({0} U {¢}). (The arguments befow can be
modified without difficulty to account for functions a{-) which vanish inside £.) The function
B{(x. u), the magnitude of the disturbance, is defined as

e ifu =2 A Hx)
0 otherwise,

() B(x, u) =‘

where le| is a bounded constant and A(x) = Ay > 0 is the rate at which disturbances occur.
N(t, ) is a random Poisson measure in R’ such that for any Borel set A C R', EN(s, 4) =
tm(A), where wis a finite measure which assigns mass A {x) to the interval [A~'(x), o). Solu-
tions of Equation (1) satisfy the ordinary differential equation dx/dr = a(x) between distur-
bances of magnitude €, and the latter occur according to a Poisson process with rate A (x,). The
infinitesimal generator 4 of {x,/, which acts on bounded, continuous functions f* £ — R, is
defined by Af(x) = a(x)f'(x) + 2 (x) [f{x +€) — f(x)]. The behavior of a(x) and the sign
of € will determine the boundary conditions which may be imposed at x = 0 or x = £ upon
solutions of Af(x)} = bf(x), an equation which will occur below.

Let g(-) > 0 be a bounded, continuous function on R}, and . the set of stopping times
relative to the family of o — algebras # C Fgenerated by {x,}. The optimal stopping problem
we shall consider is to find a stopping time T € # (if one exists) such that for any x € E

3 E. e tiglx;) = sup Eetglx,)=s5(x), b 20

where £, denotes the expectation conditional on xp= x. In the next section we shall derive a
dynamic programming equation satisfied by the payoff s(x).

3. A FUNCTIONAL EQUATION SATISFIED BY s(x)

Suppose that x; = x and we wish to follow an optimal stopping policy for ail future time.
If we stop the process, we gain g(x) as payoff; if we decide to wait a time A > 0 for a higher
payoff, our expected gain is E, e~ %2 s(x + Ax), where Ax is the distance x, has moved during
A. Since we may only wait or stop the process, we have
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(4) s(x) = max {g(x), E, s(x + Ax)e 23}

and if s(x) € D,, the domain of 4, E,.e"®3s(x + Ax) = s(x) + Ads(x) — bAs(x) + 0(A),
whence

s(x) = max {g(x), s(x) + Ads(x) — bAs(x) + 0(a)},
or
(5 0 = max {g(x) — 5(x), A(As(x) ~ bs(x)) + 0(A)}.
Since A > 0 is arbitrary, we have the dynamic programming equation
(6) max {g(x) — s(x). 4s(x) — bs(x)}= 0. s € D,.
If ¥ is the set of points in £ at which it is optimal 10 stop, and ¥ = E — ¥ is the optimal con-
tinuation set, we have from Equation (6) that
N s{x) = g(x) and 4s(x) < bs{x) <> x € ¥
and As(x) = bs(x) and s(x) > g(x) <=> x € § .

By Theorem 6, p. 108, of éiryaev 9], 7, the optimal stopping time, is equal to inf
{# > 0: x, € £}, provided that P( < )= 1. The equations at (7) are not enough to deter-
mine an optimal policy (and therefore s(x)) because they do not specify the boundary of &
The next section is devoted to a derivation of condtions for "matching” s(x) to g(x) at the
boundary of ¥ These conditions will serve to determine an optimal policy uniquely in most

cases of practical interest.

4. OPTIMAL MATCHING CONDITIONS AT 3%

The nature of these conditions depends upon whether x, crosses 8% by smooth or discon-
tinuous movement. The following theorem treats the case of continuous movement and is part
of the lore of optimal stopping for various continuous processes. It says, in our case, that if x,
can enter by smooth movement, the payoff s(x) will be a smooth function on 9 Zinside E.

THEOREM 1: Let xo=0 € 8%, o # 0, £, and suppose that for any small A > 0,
xy € & if there is no jump during [0. Al. Assume further that D(x) = s(x) — g(x) is in D,
at x = o, s'(o) and g'(c) exist and are continuous with the derivatives taken for x — o from

within €. Then

dsto) _ dglo)
dx dx '

where d/dx is the left (right) derivative if alo) > (<) 0.

(8)

PROOF: (A modification of an argument first used by Grigelionis [5]). By hypothesis,
E,D(xy) = AA D(x) + 0(A) for small A > 0. On the other hand,

A
E,Dixy) = Dio +a@) |1 = [ A(m(s)as
+Dlo + 6 [, \m(s))ds + 0(a)

= D(o +¢) A(o)A + 0(A),
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where dm(s)/ds = a{m(s)), m(0) = . Hence,
AD@)=A(@@) D@ +¢€),
or
a(ad)D'(c) + Ao)D(o +€) =A(c)D(c +¢),
so that (g (@) = 0)
s'e)=g'lc).
which was to be proved.

The following theorem treats the case in which x, can enter ¥ only by means of a jump.
Grigelionis’ theorem does not apply here because the expected exit time from a neighborheod
of o into ¢is bounded away from zero. The proof of his theorem also requires that s be in the
domain of A at o since solutions of Af(x) = bf(x), x € &, f(x) = g(x), x € &, generally
have a discontinuity at o in this case, it is not a priori clear that s satisfies this requirement.

We shall see that the requirement for matching of derivatives is replaced by that of continuity
of s across  ¥when x, can enter Fonly by a jump.

THEOREM 2: Suppose that xg=0 € 8%, ¢ #= 0, £, and that for any small A > 0,
x4y € € if x, has no jump during (0, A]. Then the following conclusions hoid:

(@) ifo +€ € £ando — € € ¥ then no optimal boundary condition may be assigned at
g

(b) ifo +€ €% then

9 slox)=glo)ife S0,
where sl =) = lim s(x).
x2o

PROOF: Under the conditions of (a), ¢ is not accessible on an optimal path from €.
Consider (b). By the definition of s, s(c +) 2 g(x). Now suppose that instead of stopping at
o (which is optimal) we let x, evolve for a short time A > 0 during which x, moves a distance
Ax. Then

glo) 2 E, slo + Ax)e
- [slct)+a@)As' @) (1 —A@)A) (1~ bA) + slo + €A @) A+ 0(A)
=Ala(@)s'@) +A@)sloc +€)— AW@) + b)slo £)] + sl )+ 0(A),

where s’ is the appropriate one-sided derivative. Since A > 0 is arbitrary, we have
sl £) < glo), whence the theorem is proved.

S. AN EXAMPLE
Suppose that a{x) = a, A (x) = A > 0, g(x) = x? and that 0 and ¢ are reflecting barriers

if they can be reached by x,. This is a simple model for a dam or inventory whose input {out-
put) is described by the ordinary differential equation dm (s)/ds = a, and whose output (input)
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is described by a Poisson process with rate A and jumps of size €. The reflecting barrier
assumption implies that the content of the corresponding system stays at 0 (or £) if it reaches
or jumps over this level until new input (or output) causes the content to assume a value in
(0. £). Then by Section 3

br 2

s(x) = sup E.e” 7" x;
1€ &

satisfies

As(x) = bs(x)in¥€
a0 sx)=x*in¥

where As(x) = as'(x) + Als(x + €) — s(x)]. Using the fact that #(x) = E.e ?2g(x,) is
convex if g is convex, one can show, via Equation (4), that for this example the optimal stop-
ping set must be of the form ¥ = {o, €] for some o € [0, £]. Conditions which determine
the optimal value o of o depend upon the signs of a and €.

CASE l:a > 0,€ > 0. Hered +€ € Yand s(& + €)= gld +¢). Applying Theorem
1 and taking Equation (10) into account, we find that if & € (0, £), then it must satisfy

(11) 2a0 + Ao + )2 — ] ~ bal=0,
a quadratic ino . Only the root
o, = la+re +V(a +re)2+ brel)/b

can be & and one hasd = min (o ,, £).

CASE 2: a > 0, ¢ < 0. Inthiscased +¢€ € € and Theorem 1 yields
(12) 2a0 +Asloc — el = A + blai=10

or st~ leD =0 + b — 2al/x

as an equation which must be satisfied by & if it lies in (0, £). Since s(o ~ lel) > glo —
le) = (@ — le])?, Equation (12) implies that & must satisfy bo?— 2(a — A le|Jo — re? > 0,
ord > [a—rlel + V(a~AleD?+ bre?l/b. To determine ¢ from Equation (12), we note
that solutions of the functional equation Af(x)} = bf(x). x € (0, o). flx) =0, x <0
flo) = o, f'(o) = 20, will have a discontinuity of magnitude fy = f(0+) > 0 at x =0,
which is determined to satisfy the boundary condition f(o) = flo. fo) = o2 The optimal
value of o is then chosen to fulfill /(@)= 20 or flo — D) =l + b)o — 2al/A (cf.
Equation (12)).

CASE 3: a < 0, ¢ < 0. Here x, is decreasing with probability one and we clearly have
F= Eand s(x) = x?forall x € E

CASE 4: a < 0,€ > 0. Theorem 2 applies to yield s (6 —) = ¢ as the optimality condi-
tion for &. Since x = 0 is reflecting, s'(0) = 0, or s(e+) = (1 + b/A)s(0+). A procedure for
determining & is then the following: for o € (0, £), solve Af(x)= bf(x), x € (0. o),
fx)=x% x € lo. €], flx) =&, x > £. Solutions of this equation will generally have a
discontinuity of magnitude f, = f(o—) at x = o, which must be chosen for this o to satisfy
the reflecting boundary condition at x = 0. Finally, & is chosen such that the optimality condi-
tion (¢ —) = ¢! is also met. Note that the resulting function f(x) (= s(x)) will then be con-

tinuous on (0, ¢) and will also have a continuous derivative there.
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6. CONCLUDING REMARKS

S f.“q_- —
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i. If alx)=0in (0, §) or A(x) is not bounded away from zero, x, may not attain a stop-
ping set with probability one, and stopping policies must generally include prescriptions of what
actions to take if x, enters a set in E which is absorbing.

i. Cost functionals other than (3) may sometimes be treated within the present frame-
work. The costs

E, f(: c(x)ds, E, [g(x,) -~ for c(xs)ds]

R W N

and
[k + £, for c(xs)ds]/Eor

and their discounted versions are such functionals. For example, in the second case, if
P(r < o) = 1, then an equivalent problem is to find an optimal stopping time for the cost

L

I Sy

(13) Sx) + E F(x,),

where F(x) = g(x) — f(x) and f(x) satisfies A/ (x) — ¢(x) = 0 (cf. Taylor [10]). Nonauto-
nomous costs or dynamics, or both, may also be treated by augmenting x, with time as a second

] dimension.

= jii. If le| << 1, machine solution of the retarded or advanced differential equation
‘ Af(x) — bf(x) = 0 may cause numerical difficulties, especially if there are singularities caused
by zeros of a(x). Singular perturbation expansions of f(x) in the form Y €'F, (), where 8 is

il i20
- a suitable stretching transformation (e.g., # = x/e), and the F; are to be found, may be used in
M this case to derive accurate approximations to s(x) and 8%
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DECOMPOSITION ALGORITHMS FOR MINIMAL CUT PROBLEMS

Suleyman Tufekci

Department of Industrial Engineering
and Operations Research
Syracuse University
Syracuse, New York

ABSTRACT

Consider a network G(N. 4) with n nodes, where node | designates its
source node and node n designates its sink node. The cuts (Z,. Z),
i=1 ....n~1 are called one-node cuts if 1€ Z, n @2, Z,={1},
Z,C Z;,, and Z; and Z,,, differ by only one node. it is shown that these
one-node cuts decompose G into 1 € m € n/2 subnetworks with known
minimal cuts. Under certain circumstances, the proposed one-node decomposi-
tion can produce a minimal cut for G in 0(n®) machine operations. It is also
shown that, under certain conditions, one-node cuts produce no decomposition.
An alternative procedure is also introduced 10 overcome this situation. 1t is
shogvn that this alternative procedure has the computational complexity of
0(n’).

1. INTRODUCTION

Determining the location of minimal cuts in a flow network is gaining wider importance in
recent literature. Jarvis [8, 9] shows that in a communication network, if each arc is assigned a
value which represents the effort of disabling that communication link, then the optimal stra-
tegy to disable the communication between the message sender and the message receiver is to
destroy the links (arcs) on a minimal cut. Phillips and Dessouky [16] indicate that the
time/cost tradeoff problem can be converted into a problem of maximal flow where at each
iteration the activities on the minimal cut are crashed. Rhys [18] and Pickard [17) indicate that
a selection problem of shared fixed costs can be converted into a maximal flow problem where
minimum cut identifies the optimum options selection.

Some effort has been made to find a minimal cut or all the minimal cuts in a directed net-
work, regardless of maximal flow (see [7, 15]). However, all the labeling algorithms for finding
the maximal flow provide the location of a minimal cut as a by-product at the end of the algo-
rithms {3, 4, 6]. The maximal flow algorithms proposed by Dinic [2) and Karzanov [12], find
the maximal flow but they do not provide a minimal cut. However, finding the location of a
minimal cut in these algorithms can easily be achieved by applying a labeling procedure on the
network once the maximal flow is obtained.

Among the efficient labeling algorithms, the first-labeled first-scanned algorithm proposed
by Edmonds and Karp [3] has a theoretical upper bound of (n3 — n)/4 augmentations, where n
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Karzanov's [12] algorithm with preflows has the theoretical upper bound of 0(n3) machine

. J is the number of nodes in the flow network. Among the efficient nonlabeling algorithms,
i
5 operations.

‘1 In this paper we propose two decomposition algorithms for locating a minimal cut in a 9

given flow network. The network is decomposed into 1 € m < —2'1 subnetworks with known

minimal cuts by utilizing a one-node cut concept. Section 2 gives the decomposition of the net- 1
work into two subnetworks by an arbitrary cut. The relationship between the minimal cuts of
the subnetworks and the arbitrary cut is given in Theorem 1. The concept of one-node cuts
and some related theorems are introduced in Section 3. Section 4 presents an algorithm for :
decomposing the original network into three subnetworks where the intermediate network con- 1
tains a minimal cut. Finally, conclusions are given in Section 5.

- .

2. MINIMAL CUTS AND NETWORK DECOMPOSITION 4

LB

SYSN N VW S

A network G(N, A) is a collection of nodes and ordered pairs of nodes which are called
arcs. N designates the node set and A4 designates the arc set of the network. *

.

! There are two special nodes in an n-node flow network; one is called the source node,
denoted by 1 (or s), and the other one is called the sink node and is denoted by » (or 9. ‘

i With every arc (i, j) € A of G we associate a positive integer u;;, called the capacity of
. the arc. A set of nonnegative integers f;; is called a feasible flow in a network if they satisfy
the following equations:

—fif j=1
. Lfi— L Su= 0if j=1,n
o fif j=n
and
0< f; < u forall (i j) € A

where f is a nonnegative integer called the value of the flow. A set of feasible flow, f7;, which
maximizes f is called a maximal flow.

LS £

';_4_ ".. \- g
.l..\ﬁz..-ﬂut.‘r.aa e S

_ DEFINITION: Let X be a subset of the nodes in G such that 1 € X, n € X. Also let
X=N—X Let (X. X) be a set such that the arc (i, j) € (X, X) if i € X, j € X and
(i. j)€ Aorj € X,i € Xand (i, j) € A. Such a set is called a cut (or a cut-set).

3

The capacity of a cut (X, X). denoted by c(X. X), is given by
cX. )= ¥ u,

iE(NX)
i€ex.je¥

Y

X

DEFINITION: A cut with minimum capacity in a network is called a minimal cut (min-
cut).
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DEFINITION: A cut (X, X) is said to lie on the left of a cut (¥, ¥) if X € Y. Con-
versely, a cut (Y, Y) is said to lie on the right of acut (X, X)if Y 2 X.

DEFINITION: A cut (X, X) is said to lie between two cuts (¥, V) and (Z, Z) with
YCZifYCXgcz

DEFINITION: Two cuts (X, X) and (Y, ¥) are said to cross each other if each one of
thesets X N Y, XN Y, XN Y and X N Yis nonempty.

Ford and Fulkerson [4] show that for single commodity network flow problems the value
of a maximal flow, f*, is equal to the value of the capacity of any minimal cut in that network.

Let G = (N, 4) be a network with N = {1, ..., n}. Also, let (X, X) be an arbitrary
cut. Let all the arcs (i, X) € (X, X) be collected to an artificial node s with
us= Y u; foreachi € X
jeX
Similarly, let the arcs (X, j) € (X, X) emanate from s with
u;= Y u, foreachj€ X
ieXx

Note that the arcs (j, i) € (X, X) are ignored in this procedure (since they have no effect on
cut values).

By this procedure we create two subnetworks connected to each other via a single artificial
node s. Let G;= (X U {s}, 4)) be the first subnetwork where the arc set 4, contains all the
arcs (i, j) € Aand i € X, j € X plus the arcs (i, s), i € X as described above. Similarly, let
G,=_({s} U_X, 4,) be the other subnetwork, where A4, contains all the arcs (i, j) € 4 and
i € X, j € X as well as the new arcs (s, j), j € X as described above. Note that c(X, s) =

c(s, X) = c(X, X). Also note that the artificial node s serves as a sink node for G, and as a
source node for G,.

THEOREM 1: Let a network G(N, A) be partitioned into two subnetworks G, and G,
by an arbitrary cut (X, X), as described above. Suppose that (Z;, Z,) is a minimal cut for G,
and (Z,, Z,) is a minimal cut for G,. Then the following statements are true:

(@) max{c(Z, Z)), c(Zy ZP) <€ c(X, X),

(b) there exists a minimal cut for G which lies between (Z,, Z)) and (Z,, Z,),

(©) ifc(Z;, Z)=c(X, X) > c(Z, Zy), then (Z,, Z,) is a minimal cut for G,
@) ifc(Zy Zy) = c(X, X) > c(Z,. Z)), then (Z,, Z,) is a minimal cut for G,

(@) if c(Zy, Z)) = c(Z; Zy) = c(X, X), then the cuts (Z,, Z)), (Z,, Z,) and (X, X)
are all minimal cuts for G.
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PROOF:
@ If e(Z,. Z) > c(X, X), then _we would have chosen (X, X) as the minimal cut
between 1 and s. Thus, ¢(Z,, Z)) < c(X, X). With the same line of argument we
have c(Z;. Z,) € c(X. X). |
(b) Suppose that (Y, ¥) is a minimal cut for G which crosses (Z,, Z,) and (Zy, Zy) as ‘
shown in Figure 1 below.
]
b

Z,Z,) XX 2, Z,) v, ¥)

FIGURE 1. A minimal cut (Y, E%) crossing (Z;. E,) and (Z,. Ez).

Consider the following node-sets:

YNZNZ,B=YNZNZ,C=YNZNZyD=7YN

A=
Y¥nZ,nZ, F=YnZn2Z,. Note that 4UB=~Z, CUD
AUBUCUD= Z,,EUF=2,,BUDU F=Yand4 U CU E=~

Consider the cut (B, N — B). Since B C Z, this cut lies completely in G, and thus
(B N-B) 2 c(2, Z)
where N— B= AU CU DU E U F. Thus, we have
1) c(B, A} +c(B, C)+c(B, D)+ c(B E)+c(B F) 2 c(A, C)+ c(4, D)
+c(4, E)+c(A, F)+ c(B, C)+ c(B, D)+ c(B, E) + c(B F).

Similarly, consider the cuts (N — E, E) and (Z,, Z,) which lie in the subnetwork G,.
With the same line of argument we have

¥3) c(A, E) + ¢(B, E)+ c(C, E)+c(D, EY+ c(F, E) 2 c(4, E)+ ¢c(B, E)
+¢(C, E)+c(D, E) + c(4, F) + c(B, F) + ¢(C, F) + ¢(D. F).
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J Adding (1) and (2) together and subtracting c(8, E), c(C, E), c(B, D), c(4, E) and
‘ c(B, F) from both sides we get

3 c(B, A) + c(B, C) + ¢(B. E) + ¢(D, E) + ¢(F, E) 2 ¢(4, C) + ¢(4, D)
~ +c(4, E) +2c(A4, F) + ¢c(B, C) + c(B, E) + ¢c(B, F) + ¢(D, E)

+¢(C, F) + c(D, F).

We also have

4) 02 -c(4, D)—c(4, F) - ¢(C, F),

(5 c(D, C)=c(D, C)

and

6) cD, A+ c(F AY+c(FCY20

By adding (3), (4), (5) and (6) we get _

%) (B, A) +c(B, C)+c(B, E) + c(D, E) + ¢(F, E) + ¢(D, C) + c(D, A)*
+c(F, A)+c(F, C) 2 c(4, C)+c(A, E)+ c(A, F) + c(B, C)
+c(B, E)+ ¢c(B. F)+ c(D, C)+ c¢(D, E) + ¢c(D, F).

The left-hand side of (7) is the capacity of the minimal cut (¥, Y) and the right-hand side is
the capacity of thecut (4 U B U D, C U E U F). Thus,

(8) (Y, )2c(AUBUD CUEU F).

The inequality in (8) can only be satisfied as an equality. Therefore, we conclude that the cut
(4 U BU D, CU EU P is also a minimal cut for G.

(c) Since c(Z,, Z)) = c(X, X) both are minimal cuts for G,. From the inequality (8)
in part (b) we have shown that there exists a minimal cut for G which does not cross
a given minimal cut for G,. Since (X, X) is a minimal cut for G, and since
c(Z,, Z;) < ¢(X, X) then (Z,, Z,) is a minimal cut for G.

With the same line of argument as in part (c), we have (X, X) as a minimal cut for
G, and c(Z,, Z)) < c(X, X). Therefore, (Z,, Z,) is a minimal cut for G.

Since ¢(Z,. Z;) = c(X, X) = ¢(Z,, Z,), by considering (X, X) as a minimal cut
for G, as in part (c), we conclude that we can find a minimal cut for G which does
not cross (X, X). Therefore, (Z,, Z,), (Z,, Z,) and (X, X) are all minimal cuts
for G.

Consider subnetworks G; and G,. Since both are legitimate networks with a source and a
sink node, they can similarly be partitioned into two subnetworks G,;, Gy, and Gz, Gz,
respectively, by arbitrary cuts (X, X) and (X, X,) where X;C X and X C X, Let
(Zy1. Z)) and (Z,;, Z,;) be minimal cuts for Gy, and Gy, and let (Zy, Z,)) and (Z, Z57)
be minimal cuts for G;; and Gj,, respectively. This situation is depicted in the figure given
below where s, is the super node between G, and G,,, s, is the super node between G,, and
G, and s is the super node between G, and G,.
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241, Z14) 212 Z4)) Za. 2 Z32. Z22)

FIGURE 2. G and G, are further decomposed into Gy, Gz, and Gy, Gaa.

Therefore, we can hope to find a minimal cut (Z,, Z,) for G, by considering (X;, X;)
and the minimal cuts (Z,;, Z,,) and (Z,,, Z;,) for subnetworks G, and G,,, respectively.
This process leads us to the idea of ultimate decomposition which we will call one-node decom-
position. If this partitioning of subnetworks is repeated iteratively, X; and X,,, will eventually
differ from each other by one node. The following section introduces the one-node cuts and

some important property.
3. ONE-NODE CUTS

Let a network G(N, 4) contain n nodes. Also, let the nodes of the network be num-
bered from 1 to n, where node 1 is the source node and node # is the sink node.

Consider the following noncrossing cuts:
(Z, Z), i=1,2, ..., (n~1), where
Zi-U;-l[j}- Z- N-Z,-.

Thus, Zy=1), Z,={1,2), ... Z_,=(1. 2, ....n—1},

and 21" {2, 3. ey n]. 22- {3. 4, cee s n}. e z,_|-{n}.

We will call these cuts one-node cuts since Z; differs from Z;,, by one node. The values of the
cuts, ¢(Z, Z), i=1, ..., n~ 1 viewed as a sequence of numbers, will produce subse-

quences of increasing and/or decreasing values.

Graphically, we will have a picture similar io the one given in Figure 3 below. In this pic-
ture the downward arrows represent the decreasing subsequences and upward arrows represent

the increasing subsequences.
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FIGURE 3. A typical picture of one-node cuts and their relative values.

: THEOREM 2: If ¢(Z,, Z) = ¢(Zipy. Zyy) fori= 1,2, ..., n—2,then (Z,_,, Z,_,)
- is a minimal cut for G.

PROOF: Let (Y, ¥) be a minimal cut for G which lies on the left of (Z,_,, Z,_,). Con-
- sider the node set Y. We can find an index k such that Z; C Y for j < k and Z; & Y for
Jj > k. (Note that Z, S Y.) Let Figure 4 depict this situation.

2, 2.}

. 4!

C el

©

<

‘;‘t.n._ tr L

-

(Zu +1. ik +1)

FIGURE 4. The case for ¢(Z,, Z) 2 ¢(Zyyy. Zyat)s i= 1 2. ... n~ 2.
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J Let Zk+] N Y= M, Zk*l n 7- (’C + ”- N, ZIH'I N Y=L and 2[‘4.' N 7- T
We have

c(Zy. 2) 2 c(Zyey. Ziyy)

or
j cCMNULUT)2Zc(MUN,LUT)
' or
cM, N)+cM, L)Y +c(M, T)2c(M L)+ c(M, T)+c(N, L) + c(N, T.
Since
0 cNV L)
we can write
) c(M, N)+c(M, T)2c(N, T)+c(M T).
Since
(10) c(L, T)=c(L, T
and
(1D c(L, N) 20,
by adding (9), (10), and (11), we get
(12) L, D+l M+cM T)+cM N)Z>c(N, TV+c(M, T)+c(L, T).

The left-hand side of (12) is nothing but c(¥, ¥) and the right-hand side is c(¥ U {k + 1},
Y — {k + 1}). Therefore,

(13) (Y, V2 c(yulk+1), Y- {k+1}).

Hence, the cut (Y U {k + 1}, ¥ — {k + 1}) is as good a cut as (¥, F). By assuming the new
cut (Y U {k + 1}, ¥ — {k + 1]) as a minimal cut for G we can apply the same reasoning again.
Thus, we will eventually reach the conclusion that (Z,.,, Z,_,) is a minimal cut for G.

THEOREM 3: If ¢(Z,, Z) € ¢(Z;4y. Zip)), i=1, ..., (n—2), then (Z,, Z)) is a
minimal cut for G.

PROOF: The proof of this case is very similar to that of Theorem 2. In this case we find

an index ksuch that Z; 2 Yfor j > kand Z, 2 Y for j < k. This situation is depicted in Fig-
ure 5 below.

Wedefine M= Z,_, N Y, N=Z,_,NY¥,L=Z_,N V.and T= Z,_, 0 ¥

We have
C(Zk..|. -z.k-l) £ C(Zk. 2*)

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. 3, SEPTEMBER 1981
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v, Y

201 Z4- o) 2, 2,)

FIGURE 5. The case for ¢(Zy. Z) € c(Zpy. Zuwdsi= L ... n =2,

cMULNUDScMULUN,T)

cMN)+cM T)+c(L, N)+c(L, V< c(M, T)+c{L, T)+ c(N, T).

c(L, N) 20,
cM N+cMTScMT)+c(N, T)
c(M, L)=c(M, L)

0< cN, L).

By adding (14), (15), and (16), we get

cM N +cM, T)+cM, LY c(M T)+c(N, TVD+c(M, L)+ c¢(N, L)

(Y= (kl, YU (kD € c(V. V).

As in Theorem 2 by rede™ning the minimal cut (Y, Y) and applying the same argument, we
reach the conclusion that \ 7, Z,) is a minimal cut for G.
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J THEOREM 4: If the one-node cuts produce only a decreasing sequence followed
N immediately by an increasing sequence, then the one-node cut with the smallest capacity is a
minimal cut for G.

PROOF: Let p be the index where ¢(Z;, Z) > c(Z,,, Z;x) for 1 < i < (p—1) and
c(Z, Z) € c(Z,,, Zy) for p< i< (n—2). Let (Z, Z,) divide the network into two
|‘ subnetworks G, and G, as described before. (Note that (Z,, Z,) is (X, X) in Theorem 1.)
; The subnetwork G, contains only a decreasing sequence and the subnetwork G, contains only
an increasing sequence. From Theorem 2, (Z,, Z,) is a minimal cut for G, and from Theorem
3, (Z,, Z,) is a minimal cut for G,. Then from Theorem 1 we conclude that (Z,, Z,) is a
minimal cut for G.

decreasing sequence, then either the one-node cut with minimal capacity is a minimal cut for
G, or else there exists a minimal cut for G which crosses the one-node cut with the largest cap-

city.

j’ THEOREM 5: If the one-node cuts produce only an increasing sequence followed by a
ﬁ
1
i

y PROOF: Let p be an index such that ¢(Z;, Z) < c(Zyy, Z,y) for 1 < i< (p~1)
and ¢(Z;, Z) 2 c(Z4y, Z;y) for p < i < (n-2). Let (Z,, Z,) decompose G into two
subnetworks G, and G, as described before. From Theorem 3 we get (Z,, Z,) as a minimal
cut for G, and from Theorem 2 we get (Z,_,, Z,_;) as a minimal cut for G,. Therefore, from
| Theorem 1-b we conclude that there exists a minimal cut for G which_lies between (Z,, Z,)
. and (Z,_,, Z,_,). If this minimal cut is not either (Z,, Z,) or (Z,_;, Z,_)), then it cannot lie
- completely in one subnetwork. Hence, it must cross the cut (Z,, Z,) which separates G, and

‘ G,.

. COROLLARY 1: For any network G(N, A), the one-node cuts decompose G into
1 € m € (n/2) subnetworks with known minimal cuts. These subnetworks are characterized
as the collection of nodes such that the one-node cuts corresponding to these nodes form a
subsequence of consecutive decreasing and increasing values. If the first subsequence is an
increasing one then the nodes corresponding to this subsequence constitute the first subnet-
work, If the first subsequence is a decreasing one then the nodes corresponding to the first
decreasing and increasing subsequences constitute the first subnetwork. After the first subnet-
work G, is determined, the remaining subnetworks G;, i = 2, ..., m can be established by
considering the nodes in each consecutive decreasing and increasing subsequences. If the one-
node cuts produce a single sequence of increasing or decreasing values, then a minimal cut for
G can be found by choosing the smallest capacity one-node cut.

._-.'...' -:_"-. . i
i!:.&g-l.'s.“ I

A minimal cut for each subnetwork is given by the one-node cut in each subnetwork with
minimal capacity. (Note that the last subnetwork may contain only a decreasing sequence.)

The computational complexity of decomposition by one-node cuts can easily be given as
(n — 1)? additions and/or subtractions and (n ~— 2) comparisons.

Therefore, the one-node cuts can produce a minimal cut for a network in 0(n?) additions
and/or subtractions if the one-node cuts produce a single subnetwork (cases in Theorems 2, 3,

and 4).
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It is clearly obvious that it is to our benefit to end up with a single subnetwork (the net-
work itself) as the result of one-node cuts. The following section exploits this situation. In the
approach presented in the next section, the one-node cuts are selected in such a way that either
the one-node cuts will produce a single subnetwork or we hope that some nodes will be elim-
inated from the original network so that a smaller subnetwork can be solved for a minimal cut.

4. THREE-DECOMPOSITION PROCEDURE

The name three-decomposition stems from the fact that we would like to decompose a
given network G into three subnetworks G;, G,, and G; with the property that a minimal cut
for G can be found by only considering the intermediate subnetwork G,.

In order to achieve this goal we will try to obtain a decreasing subsequence of one-node
cuts starting from node 1. If this process does not exhaust all the nodes of G then we will try
to obtain an increasing subsequence of one-node cuts ending at node n. This process will pro-
duce one of the following three outcomes:

@ c(Z. Z) 2 c(Ziy. Ziy), i=1, ..., n—-2
® c(Z. Z) < c(Ziy Ziy)),  i=1.2,...,n-2
©) e(Z, Z) 2 c(Zipy. Ziy). i=1 ..., (k-1 and
c(Ziy, Zi2) € (2, Z), i=m=1,(-2),...,p+1

and k < p

If the outcome is as given in case (a) then from Theorem 2, (Z,-,, ch) is a minimal cut for
G. If the outcome is as given in case (b) then from Theorem 3, (Z,, Z,) is a minimal cut for
G. We have three possible subcases for an outcome described in case (c):

(i) & = p. In this subcase the network contains a decreasing and an increasing block
and, hence, (Z,, Z,) is a minimal cut for G.

(i) 2 < p— k < 3. In this case (Z, Z,) is a minimal cut for G if c(Z,,_ Z) <

c(2,. Z,) or (Z,. Z,) is 2 minimal cut for G if c(Z,. Z) < c(2Z,, Z,). If
cZ,. Z,)= c(Z Z ) then both cuts are minimal cuts for G.

(iii) p— k = 4. In this case either the one-node cut with minimal capacity is a minimal
cut for G or else there exists a minimal cut which lies between (Z,, Z,) and
(z,. Z,).

The following algorithm formalizes the foregoing discussion.

ALGORITHM:
Step 0. Let Z, = {1}, Z, = N — {1}. Also let c(2Z,, Z)) = ; u;, and k =1.
(1.))€A
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Step 1. Determine
c(Z,V*) Z, - j*h= Tizn {c(z, U 1}, Z, - D).
18 €y
i®n

If c(Z. Z) > c(2,U (j*), Z, - {j*]). then set Ziyy=Z, U {j*} and
Zisi=N—Z,,1, k= k + 1, go to Step 1. Otherwise, go to Step 2.

Step2. Let Z,.,= {n}, Z,.,= N— Z,_,. Also let

c(Z,yv Z,.)= Y u,. andp=n-—1.

Gnl€4

Step 3. If p = &, go to Step 4; otherwise determine
c(Z, - {j*), Z, U {j*)) = min {c(Z, - {j}, Z, u {jhh
AL

i€z,

If (Z,,Z,) 2 c(Z,-(j*), Z,U{*). then Ilet Z,.=2,-\*), Z,,=
N—-2Z, . andp=p-1,goto Step 3. Otherwise, go to Step 4.

Step 4. If Z, = Z, stop,_a minimal cut for the original network G(N, 4) is at hand.
(Z,. Z\) = (Z,, Z,) is a minimal cut, with capacity c(Z,, Z,) already calculated.
If p—k <3 (e, Z and Z, differ by at most 3 nodes) then (Z,, Z,) is a
minimal cut for the original network if ¢(Z,. Z,) < ¢(Z,, Z,) or (Z,. Z,) is a
minimal cut for G if c(Z,, Z,) < c(Z,, Z,), or else both cuts are minimal cuts for
G.

If p~ k > 3, then let (Z,, Z,) and (Z,. Z,) divide the node _set of the original net-
work into three subsets Ny= Z,, N,= Z,- Z, and Ny= Z,, respectively. Con-
struct the intermediate subnetwork G,(N}, 4,), where N3= N, U {s* ¢*}, where s*
and * represent a super source and a super sink, respectively. Determine u; and
Ui, j € N; as described before. Obtain the maximal flow for G, by using Karzanov's
algorithm [12]. At maximal flow apply Ford and Fulkerson's [4] labeling algorithm
once to obtain a minimal cut. The minimal cut obtained by this procedure is a
minimal cut for the original network, G.

Assuming Karzanov's [12] algorithm requires 0(n’) operations, we can determine the
computational upper bound for the Jproposed algorithm. Let us assume that after one-node
decomposition we have |Z,|= k, |Z,|= n — p, also let x = k + (n — p). Thus, the total
number of additions and/or subtractions for Steps 0 through 3 can be written as 0(xn?). Simi-
larly, the number of comparisons can be written as 0(xn). If k =~ 1 and P=n-—1l{x=2),
then the algorithm requires 0(n?) additions and 0(n) comparisons and concludes that either
(Z,, Z)) or (Z,_,, Z,_) (whichever has the smallest capacity) is a minimal cut for G or else a
minimal cut should be determined on the overall network by utilizing any efficient maximal
flow algorithm available.

f2€x<(n—-4 then_the algorithm_will produce an intermediate network G, which
will lie between the cuts (Z,. Z,) and (Z,, Z,). Including the super source s* and the super
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U

sink ¢*, G, will contain n — x + 2 nodes. Finding the maximal flow in this network will give
us a computational upper bound of 0[(n — x + 2)%] in Step 4, if Karzanov's {12] algorithm is
used. Assuming that the upper bound is reached in Karzanov’s algorithm, then the computa-
tional upper bound of the proposed decomposition algorithm can be written as 0((n — x)?).

“

5. CONCLUSIONS

Two alternative decomposition procedures have been presented. In the first procedure,
one-node cuts were selected in a fixed predetermined order. If we naively assume that the
values of one-node cuts are random and coming from the same distribution, then we can find
out the expected numbers of runs, £(X), (increasing or decreasing blocks) from the formuia
E(X)= (2IN-1-1)/3= (2N-3)/3 and its variance V(X)=[16(N—-1)-
291/90 = (16N — 45)/90 given by Levene [14], where (N — 1) is the total number of observa-
tions (one-node cut vatues). For (N — 1) > 20, the distribution of X can be approximated by
a normal distribution with mean E(X) and variance ¥ (X) as given above [14]}.

[V PN

[l

© o aman. wasta

Therefore, in a large-scale network, the probability of having X < 2 can be obtained from
the statistic

- l:.ﬁ&!’l- - - /2
VA 2 L (—=2N +9)/1(16N — 45)/10}V2,

i For N=22, P(X < )= ® (=6.317) = 1.0 x 107,

g The probability obtained above indicates that the probability of having one or two blocks

T in (N — 1) cuts is very small. In other words, the probability of hitting the worst case is almost

zero (if the two blocks are an increasing and a decreasing one) as well as the probability of
S finding the minimal cut without further computation (if there is either one block, or two blocks

o starting with a decreasing one). However, if the arc capacities are identically, uniformly and
v independently distributed between two integers, a and b, and if the network is complete, then

E(u,’])-“,’j-"" (b+a)/2

)

% .o 0

and

Thus, the expected capacity of the cut (Z,, Z,) can be written as
E{c(Z,. Z)) = kln — k= k(n — k) (b + a)/2

3!9..‘1...'1:4';..

v
.

and

Vic(Ze, ZO) = Lk(n ~ k)2 (b - a)¥/12,
where k (n ~ k) is the number of arcs on the cut (Z,, Z,) from the node set Z, to the node
set Z,. It is clear from the above formulas that the one-node cut (Z,;;, Z,,;) has the largest
expected capacity and also the largest variance.

We have simulated some random networks with arc capacities uniformly and indepen-
dently distributed over the range (1, 50) and the number of increasing and/or decreasing

sequences are given in Table 1 below.

It is clear from the table that a sparse network can be decomposed into more subnetworks
than a dense network.
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TABLE 1 — Average Number of Increasing and/or
Decreasing Blocks on Random Networks

Number of | Number of Density 4V/n(n~ 1)
Nodes [Replications| |, | s ] 41 s] 6| 7].8]|.9]10
10 50 3.30| 3.92(3.8213.36(3.26{3.02{2.8012.64]2.44|2.24
20 50 6.5 | 5.96(15.4814.48(4.16|3.64(3.76{3.40(2.64{2.80
30 50 10.02| 7.88]6.56(5.7214.96(4.7614.24{3.7613.40({3.00
40 50 11.52] 8.88(7.20(6.32/5.7214.5213.32|4.32|3.60{3.16
50 50 13.78/10.04|8.8216.88/6.0815.3614.36/4.32|3.88]3.72
75 50 18.08112.6 19.6818.2017.1216.0815.48(4.84!4.40(4.20
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EXPEDIENTS FOR SOLVING SOME SPECIALLY STRUCTURED
MIXED-INTEGER PROGRAMS*

Hanif D. Sherali

Virginia Polytechnic Institute and State University
Blacksburg, Virginia

ABSTRACT

In this paper we consider dual angular and angular structured mixed integer
programs which arise in some practical applications. For these problems we
describe efficient methods for generating a desirable set of Benders' culs with
which one may initialize the partitioning scheme of Benders. Our research is
motivated by the computational experience of McDaniel and Devine who have
shown that the set of Benders’ cuts which are binding at the optimum to the
linear relaxation of the mixed integer program. play an important role in deter-
mining an optimal mixed integer solution. As incidental results in our develop-
ment, we provide some useful remarks regarding Benders® and Dantzig-Wolfe's
decomposition procedures. The computational experience reported seems to
support the expedients recommended in this paper.

1. INTRODUCTION

In this paper we consider some mixed integer programs with special structures. Our
research is motivated by the empirical study of McDaniel and Devine [10] who discovered that
when solving a mixed integer program using the decomposition scheme of Benders [2], the set
of Benders’ cuts or constraints in the master problem which are binding at the linear program-
ming optimum are almost sufficient to obtain an optimal solution to the mixed integer program,
in that only a few additional Benders’ constraints are required. In fact, working with problems
of different structures, McDaniel and Devine [10] found that if they were to solve the linear
relaxation of the mixed integer program using the decomposition scheme of Benders {2], that
is, solve the master program at each iteration as a linear program, then when they switched
over to solving each master program as an integer programming problem after having obtained
the linear programming optimum, very few (typically one) additional Benders® inequalities were
required to verify optimality.

In the light of this study, we examine two types of mixed integer programs, each with a
special structure. For these programs, we describe a means of exploiting their spccial structures
to obtain an initial set of Benders’ cuts with which one may initialize the usual partitioning
scheme of Benders [2). This initial set of cuts is desirable in view of McDaniel and Devine's
[10] observation, in that the linear relaxation of the master program with these cuts obtains an
optimal or near optimal solution to the linear relaxation of the original mixed integer program.
As incidental results in our analysis, we provide some interesting remarks regarding Benders’
[2] and Dantzig-Wolfe’s [4] decomposition procedures.

*This material is based upon work supported by the Nationa! Science Foundation under Grant No. ECS-8103732.
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2. MIXED INTEGER PROGRAMS WITH DUAL ANGULAR STRUCTURE

In this section, we consider a mixed integer program of the form

Pl: minimize c¢lx;+chx;+d'y
subject to  A4,x, + Dy 2 b
Axy+ Dy 2 b
Gy 2¢
X, X,y 20
y€Q

where 1 is the set of integer vectors and where a superscript f will throughout denote 8 matrix
transpose operation. Problem P1 is said to have a dual angular structure with the variables y
being coupling variables (see [7] for example). For the sake of notational simplicity, we have
considered only two diagonal blocks of x-variables, though of course, the development general-
izes to any number of such blocks.

Problem P1 may arise, for example, within the context of discrete stochastic programs
with recourse [13] where in addition, the "first stage decision” vector y is restricted to be integer
valued (typically binary-valued). The proposed approach in this case becomes particularly
attractive if the random right-hand side vector & can only be one of a reasonably few number of
vectors by, b,, ..., b, according to some discrete probability distribution.

Now, let LP1 denote the linear relaxation of Problem P1, that is, Problem Pl with the
restrictions y € 1 relaxed. Further, merely for the sake of simplicity, assume that each set of
variables x, and x, has one component which is an artificial variable with a large positive
coefficient in the objective function and a column of ones in its corresponding constraint-
coefficient matrix. This assumption guarantees that a feasible solution to Problem LPI exists
for any fixed value of y € Y, where

(1) Y=1{y: Gy2g y20l
Using the partitioning scheme of Benders {2], Problem LP! may be decomposed as

min d'y + [min ¢lx; + ¢hx; 1 A\ x, 2 by — Dy, x, 2 0
yey X|.X1

Axy 2 by— Dy, x3 2 0)
which may be rewritten (using duality) as
2 ',ng",’ d'y + lln:x:x (b;— Dyy)m,: Aim, < ¢, 7y 2 0}
+ {n:t:x (b;— Dy)'my Aimy € ¢, w3 2 0}]
Finally, denoting

3) Si={m,: Al L ;. 2 0)
(4) Sz-|1r;:A'2ﬂ2$cz.1rz>0]
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and observing that our assumptions imply that S, and S, are bounded, Problem LP1 may be
written as Benders’ master problem

BMP: minimize dy +2z,+ 2,
subject to
(5) z; 2 (by— D\y)w{foreach j € J,
6) z; 2 (6;— Dy)iw]foreach j € J,
yevy
where
N Jy= li:#m/is an extreme point of S}
® Jy= {j:m]is an extreme point of S,) .

Let this problem yield an optimal vector y*. Then, the corresponding x{ and x3 which define
an optimal solution (x{, x3, y*) to Problem LPI are obtained respectively from (2) as dual
optimal vectors to Problems SP1 (*) and SP2 (y*), where

SP1(y): max {(6,— Dy)'m, : w, €S}
SP2(y): max {(b;— Dy)'m, : w, € S}

However, not all the constraints in (5) and (6) may be necessary to define an optimal
solution (z1, z3, y*) to Problem BMP. As shown by Benders (2], the following relaxation of

BMP may be sufficient so long as, if (2,. Z;.§) solves BMP (&, /), then %, and Z, are respec-
tively the optimal objective values of Problems SP1 (») and SP2 ():

BMP(k,1): minimize d'v + 2z, + 2,
subject to
¢)) 202 (b~ Dy)w{ for j=1,....k
(10) 232 (b~ Dy)w) forj=1, ..., 1
y ey

If this is not the case, say, 3; < (b, ~ D\p)arf*!, where m{*! solves SP1 (§), then an addi-
tional Benders’ cut (or constraint) z; = (b — D\y)’ w{*! is appended to Problem BMP (k, /).
In this manner, Benders’ [2] scheme iterates between the master problem BMP (4, /) and the
subproblems SP1 (y) and SP2 (y) until for some k and /, the above termination criterion is
satisfied. It is our purpose to show how one may construct such a problem BMP (k, N is a
more efficient manner. Thereafter, as indicated by McDaniel and Devine (10], if one com-
mences the application of Benders’ scheme on Problem Pl with the master program
BMP(k, 1), then a minimal amount of additional cuts of the type (9), (10) may be required to

soive P1.

The main property we use toward this end is the dual relationship between Benders® [2)
scheme and the Dantzig-Wolfe [4] decomposition method (see Lasdon [7}, for example).
Observe that the dual (LD1) to Problem LP1 has a block diagona! (or angular) structure as
shown below
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LDi1: maximize biw; + bim, + ghx
! subject to
~i Dim, + Diymy+ Ga < d
; ), €5,
w,€ 8,

.t

a20.

This problem is most amenable to the Dantzig-Wolfe decomposition method [4] which writes

each 7| € S, as a convex combination m) = Y A7/, where 3 Aj;= 1,A;; 2> 0, and simi-
i€J €4,

larly expresses each 7, € S;. In this manner, Problem LD1 is written as the Dantzig-Wolfe
master program.

PR S

o il

DWMP: maximize X A (bjm) + T Ay (b)) +a's
. i€l Jed,
i subject to
..,‘: ZA” (Diﬂ’l})"" ZAZI(Diﬂil)'fchd
-.1 i€l j€l
2 Ay=1, 2 Ay=1
-~ j€d, j€d,

;
. AM;j20,j€J1:0;20, j€J;,a20.

&
. Again, not all the columns for A,;, j € J; and Ay;, j € J, may be necessary to solve LD1
[ through DWMP. In particular, the following restriction of DWMP may be sufficient.
k i
; DWMP(k, /): maximize Z A, (b{in)+ ¥ Ay (di7)) +a'g
- j=1 =1
i’ subject to
: k i
j=1 J=1
k
(12) z A 1y - 1
=
!
(13) T A=Ay 20 j=1,...,kix; 20, j=1, ..., l;a20
j=1

so long as, if 5, 2, and %, are optimal dual variables associated with constraints (11), (12) and
(13), respectively, then 2, and Z, are respectively the optimal solution values of Problems
SP1 (5) and SP2 (5). If this is not the case, say 2, < (b, — D,5)' wf*!, where w{*! solves
SP1 (§), then an additional column corresponding to = ' (with variable A1) is appended
to Problem DWMP (k, /). In this manner, Dantzig-Wolfe’s [4] method iterates between the
master problem DWMP (k, 1) and the subproblems SP1 (y) and SP2 (») until for some k and 1

{, the above termination criterion is satisfied.
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Note the dual nature of the foregoing remarks [(7]. In fact, Problems DWMP and BMP
are duals of each other and so are Problems DWMP (k, 1) and BMP (k, /). Thus, once we
have solved LD1 and terminated with some DWMP (k, /), one can easily write out the Prob-
lem BMP (k. 1) which solves LP1. The reason why it’s preferable to solve LD1 is of course
the savings in effort whereby the Dantzig-Wolfe decomposition scheme maintains a basis of a
fixed size as opposed to one of an ever increasing size when using Benders’ scheme. This may
be more pronounced if y is a vector of a few variables and Y has several constraints and less
pronounced otherwise.

i
1
:

. : ~
A AL e ot

L

-t

We will consider next a mixed integer program with an angular structure. Although this
structure does not lend itself to as straightforward an analysis as above, we are nonetheless able
to make some pertinent observations and temarks which are supported by our computational
experience.

3. MIXED INTEGER PROGRAMS WITH ANGULAR STRUCTURE : 1

Consider a mixed integer program P2 with the following angular structure.

)

RN Y

P2: minimize ¢'x + dYy
: ‘ subject to
(14) Cx+Dy2f
(15) Ax 2 b
Gy 2 ¢
x20.y20andyc

where ) is the set of integer vectors. Problem P2 may be used to model fixed charge produc-
tion and location, and other related problems, where the vector y is constrained to be binary
valued, denoting a yes/no type of decision, and the vector x represents production or allocation

variables. As before, let LP2 be the linear relaxation of P2, that is, with the constraint y € 0 a
relaxed, let Y be as defined in Equation (1), and assume that the set

an X=|(x:4x 2 b x 2 0

is nonempty. For simplicity, we assume that both X and Y are bounded in the following
development. Also, we have considered just one block of constraints in (15), afthough it may

be that x'= (x{, ..., x), ¢'= (cf, ..., ¢}, b'= (b} ..., b)), C=[C}, ..., Cl, and
¥

A 0 ¢

A, ‘

A= i

0 A, X

Again, we will assume that the vector x has an artificial variable as one of its components, with ;
a large positive objective function coefficient, and a column of ones in the rows (14) and zeroes

in the rows (15). This will then guarantee that for any fixed y € Y, there exists a vector x such

that (x, y) is feasible to LP2.
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Now, one may partition Problem LP2 using Benders’ decomposition [2} scheme as fol-
lows:

meir}d’y+{minc'x: Cx 2 f—Dy Ax 2 b, x = 0}
Yy x
Emsiryld'y-#(max F-DyYm+ba: Crn+Aa<cn20 a0
¥ T
Defining the sets
(18) S={r,a):Cr+Aa<enm20 a0

(19) J={j: (n’/, a’} are extreme points of S}

a relaxed Benders’ master problem with k Benders’ cuts may be written as

MP(K): minimize z
subject to
Q0 z2dy+ (f— Dy)w?+ baPforeachp € K C J
yey
where K = {1, ..., k}. Then if (3 ) solves Problem MP(K), one would solve the subprob-

lem SP () or its dual SD (5), where

SP(y): maximize (dy + (f— Dy)'w + bla: (r, a) € §)

and its dual is

SD(y): minimize [d'y + ¢'x: Cx 2 f— Dy, Ax 2 b, x 2 0).

If it turns out that Z = d'y + 'k where x solves SD (§), then (%, j) solves LP2. Otherwise,
2 < d'$ + c'%, and a Benders’ cut z > d'y + (f — Dy)'m**' + p'a**! is appended to rows
(20), where (r**!, a**!) solves SP(j). The process now continues in this manner.

Note that every lime a new row is added to (20), a solution to Problem SD(y) is called
for, a problem with an angular structure. However, Problem LP2 itself has just one more diag-
onal block than Problem SD(y). Therefore, the application of Dantzig-Wolfe’s [4] decomposi-
tion to the former problem has a basis of dimension one more than that applied to the latter
problem. Moreover, while using Dantzig-Wolfe’s decomposition, we would be able to exploit
any special structures which the set ¥ may have. This advantage may be lost in the solution of
problems MP(K) for |K| > 2. Hence, we propose to do the following. We will solve Problem
LP2 using Dantzig-Wolfe’s decomposition method [4). From this solution process, we will
show how one may obtain a desirable set of cuts (20) so as to avoid expending effort in gen-
erating cuts which may not be binding at the linear programming optimum. From this point
onwards, one may continue with the solution of Problem LP2 using Benders’ decomposition
and then switch over to solve Problem P2 as advocated by McDaniel and Devine {10}. In con-
clusion, we will also make a remark which may be a further expedient in the latter process.

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. 3, SEPTEMBER 1981

g e




) 1 EXPEDIENTS FOR SOLVING MIXED-INTEGER PROGRAMS 453

o First of all, let us present a pertinent observation afforded by Balas and Bergthaller [1).
: Note that if (x*, y*) solves LP2, then the set of Benders’ cuts which are binding at optimality
J are indexed by the following subset of the set J of Equation (19)
f 1) J={j € J: tr’, a’) is optimal to Problem SP(y*)).

However, not all the cuts indexed by j € J may be necessary to determine y* in the Benders’
master problem at optimality. In particular, if y* has 8 positive components, then SD(3*) has 8
degenerate basic variables at optimality, and so SP(y*) has up to 2° alternative optimal solu-
tions. Thus, |J] < 2% with the equality often holding [1]. But the dimension of Benders' mas-
ter program is n + 1, where y has n components. Further, we know that n — p of the hyper-
planes y, 20 i€ {l, ..., n} hold as an equality at y*. Thus, at most, some
(n +1) — (n ~ p) = p + 1 Benders’ cuts indexed by J may be needed to define the linear pro-
gramming optimum y* We now proceed to demonstrate how one may generate a desirable
subset of cuts indexed by J. Our discussion will motivate the choice of this subset. In addi-
tion, we will show how some more Benders’ cuts which are binding at optimality may be
recovered during the application of Dantzing-Wolfe's decomposition procedure to Problem
LP2, without any extra effort.

P

Toward this end, suppose that we have solved Problem LP2 using Dantzig-Wolfe's
decomposition method. Let the Dantzig-Wolfe master program at optimality be

k ]
; DWMP2: minimize : A, (e'x,) + Zl v, (d'y,)
) p- q-
; k !
. (22) A (Cx)+ X v, (Dy) 2 f
-I p=1 q=1
i K
3 (23) A, =L A, 20forp=1, ...,k
- p=1
‘ l
"l (24) L ve=1, y,20forqg=1,....1
. e~1
ki
- 4 Suppose (A * y*) solves DWMP2 I:vith Ay>0p= 'l oo  k,y3>0g=1,.... L Then
e (x* y*) solves LP2 where x*= 3 X3(x,), y*= 3 ¥2(y). Here, xe vert X (Equation ,
2 p1 a=1 ;
'j (17)) and y.e vert Y (Equation (11)). Further, if w* 6* and ¢ * are optimal dual variables ;
't,z associated with the constraints (22), (23) and (24) respectively, then 8 * and ¢ * are respectively 2
' the optimal solution values of Problems SPx (r *) and SPy (r *), where E
. SPx (r): minimize  {(c — C'm)x : x € X) '
) SPy (r ) minimize {(d - D'w)ly .y € 1} .
¥ t
S ‘
‘ Lemma 1 below recovers a dual optimal solution to Probiem LP2 from the Dantzig-Wolfe mas- '

ter and subproblems at optimality. This result may be viewed as an extended special case of
the more general result due to Magnanti, Shapiro, and Wagner [8).

U
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LEMMA 1: Let Problems DWMP2, SPx () and SPy () and the vector 7 * be as defined
above. Further, let a * and B * be optimal dual variables in Problems SPx (m *) and SPy(w *),
respectively. Then, (r *, a* 8*) is an optimal dual solution to Problem LP2.

PROOF: From the duals to Problems SPx(r*) and SPy(r*), it foliows that
(r* a* B*) is dual feasible to LP2. Further, with x* y* 6 * and ¢ * as defined above, the
Dantzig-Wolfe termination criterion implies that #*= bla* and ¢ * = g8 * Thus, from
DWMP2, c'x* + d'y* = fr* +6* +¢d* = for* + ba* + gB* This completes the proof.

Noting that (r * a*) € S, let us construct the following Benders’ master problem with a
single cut constraint.

. b ..

‘ 1 MP(*): minimize 2z
_ 295 subjectto z 2 dy + (f—- D)m* + bla*
2 y €Y.

| Now, consider the following result. In view of Lemma 1, this result is closely associated with
the concept of "strongest surrogate constraints,” a name given to constraints of type (25). (See
Geoffrion [5), Glover [6] and Rardin and Unger [11]).

LEMMA 2: Let (x* y*) and (#* a* B*) be optimal primal and dual solutions respec-
tively to Problem LP2. Then y*is optimal to MP(*) with z* = ¢'x* + d'y*.

PROOF: A Lagrangian dual to Problem LP2 is

Ve LD: maximize (h(r. a):7 =0, a = 0}

La WA'WWW' >

where him, a) = me"y‘ {d'y + (f — Dy)or + bla) + m>it(} {(c = Cr — Alx)'x}.

Since there is no duality gap between LP2 and LD, we know that (x *, «*) solves LD with
objective value hér * «*) equal to c¢'x* + d'y*. Further, (x*, y*) evaluates hAlr* a*). But
by complementary slackness in LP2, the second problem in 4 (r % a*) has a value of zero at
x = x* Thus, the first problem in k(7 *, a*), which is Problem MP(*), has an optimal solu-
tion y* and an optimal value of ¢x* + dy*. This completes the proof.

- Y .

Let us digress momentarily to discuss a certain issue related to the strongest surrogate
constraint (25). Often, such a constraint is prescribed as a device for somehow fathoming par-
tial solutions, or selecting branching variables in a branch and bound or implicit enumeration
context, implemented within the framework of an algorithm which solves Problem P2 using
Benders’ decomposition. Lemma 3 below addresses the case when such a strategy may not be
very meaningful, that is, when (25) degenerates to simply z 2 z*

LEMMA3J3: Let (x* y*) and (r* o * B*), respectively, be optimal primal and dual solu-
tions (of value z* for Problem LP2. Then, if y* € int Y, the strongest surrogate constraint
(25) degenerates to z 2> z*
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PROOF: If y* € int ¥, thenB*= 0 and y* > 0. Thus, z* = f'7 * + b *, and the dual
constraints D + GB < d are binding at (w, B) = (w* B*). In other words, Dr* = d.
Noting that (25) is z 2 (f&* + bl *) + (d — D *)'y, the proof is complete.

COROLLARY: In clase (25) does not degenerate to z 2 z* then y* and hence each
¥, € vert Y, where y* = 2 ¥ § ¥, belong to the face of Y defined by its intersection with the

q=1
hyperplane (d — D@ *)'y = g8 *

The above result holds trivially from Lemma 2 and Equation (25). Its significance is the
subject of our next discussion.

Now, Lemma 2 seems to indicate that a very desirable starting point at which to com-
mence the soiution of Problem LP2 by Benders’ decomposition is with Problem MP(*). In
addition to this single cut, one may also choose to generate the following desirable set of
independent cuts which will be binding at the linear programming optimum, i.e., which are
indexed by the set J.

The reader may note from the corollary to Lemma 3 that each y,, ¢g=1. ..., /is an
alternative optimal solution to MP(*). Therefore, it is intuitively appealing to generate /
Benders’ cuts in addition, one for each y, through Problem SP(y,) or SD(y,) forg=1, ..., L

However, these cuts may not be binding at the linear programming optimum, that is, they may
not be indexed by the set J. To overcome this, consider the following subproblem which
differs from SP(y,) by the additional constraint (26)
SP'(y,): maximize d'y, + (f — Dy))m + bl
subjectto (r,a) € S
(f— Dy*) 7w + ba 2 z* — d'v* = ¢'x*

Lemma 4 below characterizes a Benders’ cut obtained through Problem SP'(y,). Thereafter, we
show how to solve SP’'(y,) while still exploiting the angular structure which SD(y,) possesses.

LEMMA 4: Consider any y,, g € {1. ..., !} and suppose that (79, a9 solves Problem
SP'(y,). Consider the Benders’ cut

27 z22dyv+ (f— Dy)m?+ bt
Then the cut (27) satisfies ¢ € J. Moreover, when this cut is appended to Problem MP(*), it
deletes y, provided there does not exist an x, € X such that (x,. y,) solves LP2.

PROOF: Since (z*. y*) is an optimal solution to MP(J) where J is defined in Equation
(19), it follows that
(28) 2* 2 d'v* 4+ (f— Dy*)mr + bl

for any (. a) € S. Noting Equations (26) and (28), we may assert that the cut (27) is
indexed by ¢ € J. Now, y, is an alternative optimal solution to MP(*). Thus, if (x,. y,) does
not represent an optimal solution to LP2 for some x, € X, then there must exist some u € J
such that z* < d'y, + (f — Dy,)' n“+ ba¥. But (r“ a") is feasible to SP'(y,). Hence, we
must have 2* < d'y, + (f ~ Dy,)w? + dla?. This completes the proof.
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We will now proceed to show how one may solve SP’(y,) with no more effort than that
required to solve SP(y,) or SD(y,). Observe that for a fixed y = y* in LP2, we obtain
z* — d'y* = ¢'x* as the maximum value of (f — Dy*)r + bx over (v, a) € S. Noting Equa-
tion (26), Problem SP’(y,) may be viewed as a preemptive priority multiobjective program over
the set S, with an objective (f — Dy*)'w + ba having first priority and an objective
(f — Dy,)'m + ba having a lower priority. According to Sherali and Soyster [12], there exists
a positive scalar € * such that for any § > £ *, an optimal solution to the following problem is
also optimal to SP'(y,).

d'y, + maximum {[(1 + &) — Dy, ~ éDy*)'mw + (1 + §)ba:(nw, a) € S).

R X TN

. The dual to this problem is the following angular structured linear program.
j SD'(y,. €): d'y, + minimum {c'x: Cx 2 (1 +&)f — Dy, — € Dy*
5

Ax 2 (1 +£)b x 2 0}.

Note that finding a ¢ large enough (¢ > £ *) should be no problem since it is easy to show [12]
that £ * in our case is simply the negative of the optimal dual variable associated with constraint
(26). Moreover, we know that we have chosen £ large enough after solving SD'(y,, €) by veri-
fying that (26) is binding at the optimal solution (w9, «9).

Summarizing, one may first solve LP2 using Dantzig-Wolfe's decomposition and retrieve
from that (through Lemma 1) the strongest surrogate constraint (25). Then the master pro-
gram MP(*) with this single cut constraint determines the optimal vaiue of LP2. However,
since any point in the convex hull of {y,, ... . )} is also optimal to MP(*), one may determine
for each ¢ = 1. ... . /a Benders' cut which will be binding at optimality and will also delete y,
by solving SD'(y,. £) for a large enough value of £ as indicated above. In concluding this sec-
tion, we provide below two remarks. The first of these pertains to an alternative strategy for
generating an initial set of Benders’ cuts and the second remark further addresses the issue of
strongest surrogate constraints.

M el W e ¢ e by v W > Wiy B

REMARK 1: This remark is an alternative to generating an initial set of Benders’ cuts via
Problems SD'(y,, £). Note that without any extra effort, during the solution of Problem LP2
by Dantzig-Wolfe's decomposition method, certain Benders’ cuts are automatically available.
As the following discussion motivates, these cuts are quite likely to be binding at optimality.
Suppose we execute the Dantzig-Wolfe procedure as follows. At any stage, having generated
extreme points y;, ..., y, of Y in the master program, we continue to iterate between the
master program and the subproblem SPx (%) only until no more extreme points of X need to be
generated. At this point in time, the current solution is clearly optimal to the problem

v
DW(v): minimize ¢'x + Y vy, (d'y,)
=1
v
29) subjectto Cx + Y v, (Dy) 2 f
a1
(30) Ax 2 b
v
(1) Yy~ 1
q=1
x20,y,20forg=1,....v.
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Currently, suppose that 7", 8¥ and ¢" are optimal dual variables associated with the constraints
of the type (22), (23) and (24), respectively, and that a" is an optimal dual solution to the sub-
problem SPx(m"). Then following Lemma 1, ", a” and ¢ " may be shown to be optimal dual
variables associated with constraints (29), (30) and (31), respectively. But this means that if

(¥. x) solves DW (v), then for a fixed y = 2 ¥Y¢Ye» X and (", ") are, respectively, optimal

solutions to SD(¥) and SP(§). Therefore, a Benders cut
(32) z2dy+ (f— Dy)=a¥+ ba’

is readily available.

Hence, if we execute Dantzig-Wolfe's procedure by generating as many extreme points of
X as required before we generate an additional extreme point of Y, then for each optimal com-
bination of extreme points of Y which have been generated at any stage, we have a Benders’
cut (32) available from the current dual variables. It is intuitive that these cuts are desirable.
Of course, at termination, (32) is precisely (25). Also, one may finally choose to keep those
cuts (32) which turn out to be binding at the linear programming optimum. We provide some
computational experience in Section 5 regarding this remark.

REMARK 2: This note is related to the strongest surrogate constraint (25) and to our
comments associated with Lemma 3. Observe that by also accomodating the constraints
Gy 2 g into the objective function of Problem LD in the proof of Lemma 2, it is easy to show
that the following cut may be used in lieu of (25) in Problem MP(*).

dy+ (f—Dy)w*+ ba*+ (g— Gy)g*
or
> (fim* + bla® +gB*) + (d— D'n* — GBY)Y.

This is again the strongest surrogate constraint of Rardin and Unger [11]. But f'r* + b'a
g'8* = z* the optimal objective value of Problem LP2, and (d ~ D'n* — G'8*) = d 2 0, the
reduced cost coefficient vector of the y-variables at the linear programming optimum. Thus,
the above cut is

(33) z 2" +dYy.

Observe that if y* has all positive components, then d = 0, whence (33) is simply z 2 2*
Also, it is easy to see that if (25) degenerates to z 2> z* then so does (33), though not neces-
sarily vice versa. For example, gB* = 0 is sufficient for (25) not to generate to z 2> z°
though not for (33). Moreover, since our master program treats the constraint set y € Y expli-
citly, we find (25) more appropriate.

4. ILLUSTRATIVE EXAMPLE

Consider the following problem adapted from Lasdon (7].
P2: minimize{—2x; — x;— y; =y =2, —x;=y — 2y, 2 -40, x € X, y € ¥
and y integer}
X={x:i—=x, 2 ~10, =x; 2 ~10, —=x, —x; 2 =15, x;. x 2 0}

= {y:—py— 3y 2 =30, =2p; —y; 2 =20, y;. y; 2 0}
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Using Dantzig-Wolfe's decomposition to solve LP2, we first generate a vector y by solving the
problem: min{—y, — y;: ¥ € Y}. This yieids y = (6, 8). Continuing with the usual procedure
but generating only vertices of X as needed, that is, solving DW(v = 1), yields x = (4, 10) as a
convex combination of the vertices (0, 10) and (5, 10) of X. For this solution, ¥ =1,
b'a¥ = 0 and hence the cut (32) is

(34) 2 2 y,— 40.

The next vertex of Y generated through SPy(m") is y = (10, 0). Now, v= 2 and the
solution to DW(v = 2) through the continued generation of extreme poinis of X yields

x = (10, 3), a single vertex of X, and y = —153(6.8) + T72— (10, 0) = %i % . At this
stage, w¥ = % bla® = _’_:_Q_ and hence the cut (32) is
(35) i2-2, -1, -3

. 25 10
However, no more vertices of Y need to be generated and so x* = (10, 5) and y* = 303
solves LP2 with optimal value z* = — -1—%2 Thus, (35) is actually the strongest surrogate con-
straint (25). Note that according to Remark 2, that cut (33) is simply z 2 — -1—;2 Further,
we obtain
MP(*): min {z: z > — ly.— lyz— 30, y € Y).

3 3
This problem has (6, 8) and (10, 0) as alternative optimal extreme point solutions with a value

of z* = — l—;o— Note that the incidental cut (34) automatically obtained during the solution of
LP2 is binding at the linear programming optimum. Indeed, this is also the cut which would be
obtained through SD'(y,. 0) with y, = (6. 8). The reader may easily verify that the problem
SD'(y,. £). for y, = (10, 0) and for any £ > 0, yields an optimal dual solution (¢ a?) with
m %= 0 and b'a?= 25. Hence, corresponding to y, = (10, 0), the Benders’ cut which is binding

at optimality is

(36) 22—y -y~ 25

It turns out here that the cuts (34) and (36) imply the strongest surrogate constraint (35). This
may be verified by using the surrogate multipliers % and % on (34) and (36) respectively.

Thus, the master program MP (K) with the cuts (34) and (36) yields in this case an optimal
solution to LP2 using the fewest number of Benders’ cuts. In general one would have contin-
ued solving LP2 with the Benders’ cuts (34), (35) and (36).

Now, continuing with the solution to Problem P2, we obtain an optimal solution to
MP(K ) with y restricted to be integer valued as y = (8, 4) with z = —36. Solving the subprob-
lem SD(7), we obtain an optimal solution x = (10, 4) also with value — 36. Thus, (%, 7)
solves P2 and we terminate without having to generate any further Benders’ cuts. Indeed, such
a propensity is borne out by the computational experience of McDaniel and Devine (10].
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S. COMPUTATIONAL EXPERIENCE

In this section, we will attempt 1o support the ideas recommended in this paper through
some computational experience. Toward this end, recall the principal thrust of this paper.
McDaniel and Devine [10] have amply demonstrated that in solving a mixed integer program
via Benders’ [2] procedure, an attractive strategy is to solve its linear relaxation first via
Benders’ partitioning method, and use the resulting cuts as an initial set of cuts for the former
problem. Hence, we have attempted in this paper to demonstrate how one may solve the linear
relaxation via Benders’ decomposition method more efficiently, for some specially structured

mixed integer programs.

The discussion in Section 2 clearly demonstrates the value of the suggestions for dual
angular structured problems, particularly when there are few y-variables and several more con-
straints in Y. On the other hand, the suggestions in Section 3 need computational support.
More specifically, one needs to demonstrate how well the proposed initial set of Benders’ cuts
represents the linear programming solution, as well as the savings in effort which accrues from
their use. Furthermore, the comments in Remark | need to be tested.

Hence, we performed the following brief computational experiment on an IBM 370 Model
158 computer with coding in Fortran. We generated linear programs of the form to minimize
¢’x + d'y, subject to coupling constraints Cx + Dy 2 f, x 2 0, y 2 0 and block constraints
Gy 2 g y 2 0, with ¢ and d generated uniformly on [—11, —1], C and D generated uniformly
on [-50, 0], fgenerated uniformly on [~251, —1], g generated uniformiy on (-6, —1} and with
G having components 0 or —1 with an expected density of 0.5. All generated coefficients were

rounded off to the nearest integer.

Table 1 summarizes the results. The "Usual Benders’ Method” is being performed by
treating the set ¥ = {y: Gy 2 g, y 2 0} as the set of complicating variables. The "Section -3-
Method" generates an initial set of cuts via problems SD’(:) and then continues as usual,
whereas the "Remark-1-Method" employs the recommendations embodied in Remark 1 of Sec-

tion 3 to generate an initial set of cuts,

Essentially. both the methods of Section 3 perform better than the usual Benders’
approach, with that of Remark 1 appearing somewhat superior. However, as in Problems 1 and
2, the Section-3-Method seemed better than the Remark-1-Method in some other larger sized
problems we attempted in which NB >> NC. The reason being that the Remark-1-Method
generates cuts from SP(J) where ¥ is a combination of some extreme points of Y, and when-
ever the Dantzig-Wolfe algorithm generates and drops off several y-vectors while solving LP2,

the Remark-1-Method cuts are not as effective.

In conclusion, we reiterate that the savings in effort as reflected through columns f would
have been more enhanced if Y had a special structure, since this could have been exploited in
solving problems SPy () though not necessarily in solving MP(K) for |K| > 2.

6. SOME CONCLUDING REMARKS

In conclusion, we present two further expeditious remarks. The first of these pertains to
iteratively updating solutions to the subproblems SD{(y) rather than resolving each subproblem
independently. Essentially, this remark in general contributes towards performing sensitivity
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"d TABLE | ~ Computational Results
f Usual-Benders )
“, ;r:::::: m!alncl ne Method Section-3-Method | Remark-1-Method
f a b c d e £ c d e f
1 50 50) 30 40 | 12 3 4 4 4 04271 S T 3 0445
4 2 501501 10 40 5 3 4 4 4 07601} 4 S 4 0900
3 40 | 40 | 30 40 6 3 4 4 4 085014 4 4 0.627
i 4 30 ) 30 ] 10 40 6 3 4 S5 5 0973 | 5§ s 4 0.757
1 5 301 30! 30 40 9 3 4 S 5 0648 | 4 4 4 0.39%
' 6 201201 10 40 4 3 4 4 4 0768 | 3 3 3 0638
4 7 S0 | 50| 40 30 8 2 3 3 3 06264 4 2 0431
1 8 S0 | 50 { 40 10 8 3 4 4 4 08351( 5 S 4 0464
.3 9 40 | 40 | 40 30 7 2 3 3 3 0537)2 2 2 032
“! 10 30| 30| 40 10 5 3 4 5 5 13793 3 3 0621
i 11 30 30 | 40 30 5 3 4 5§ S5 12704 3 3 3 0622
3 12 201 20 | 40 10 } 10 3 4 4 4 06253 3 3 0286
I 13 50| S0 40 40 8 2 3 3 3 0604)4 4 2 0432
. 14 40 | 40 | 40 40 7 2 3 3 3 0477 2 2 2 0297
: ] 15 30 ) 30| 40 40 5 3 4 S5 5 11901 3 3 3 0619
o 16 20| 201 40 40 | 10 3 4 4 4 0494 ] 3 3 3 o02m

(i) m = # of x variables; n = # of y variables; NC = # of coupling constraints; NB = # of block constraints (in M.
(i’ a = total number of Benders’ cuts required: b = # of cuts in "d' which were binding at optimality.

{iii) ¢ = # of initia) cuts (including strongest surrogate constraint). d = total number of cuts required; e = # of cuts in
~d~ which were binding at optimality. / = ratio of total solution time to the total solution time for the Usual-
Benders-Method.

o . 4!

1y,

analysis in the context of Dantzig-Wolfe's decomposition procedure. However, the question
regarding its computational efficiency is open to further research. The second remark briefly
addresses the issue of effectiveness of Benders® partitioning scheme.

REMARK A: This remark concerns the iterative solutions of the subproblems SD(y),
both, while continuing to solve LP2 as well as while subsequently solving P2 using Benders’
decomposition. Suppose that we have solved SD(y) for some y using Dantzig-Wolfe’s decom-
position. (Here, Ax 2 b may be one of several angular blocks of constraints). Let T and @ be
optimal dual multipliers for the constraints Cx 2 f — Dy and the convexity constraint for the
extreme points of X, respectively. Then, on replacing ¥ by some j for the subsequent solution
of Problem SD(p), we have a dual feasible but primal infeasible Dantzig-Wolfe tableau. Let
the Ah row in this tableau have a negative right-hand-side value and denote the first m columns

A‘.gt“‘-t_"ha. v

' of the th row of the current basis inverse by B;, where C has m rows. Further, let the element
i of the basis inverse in the &h row and the same column as the row of the convexity constraint
b for the x-variables be ¢y,. Then, it follows that the reduced cost coefficient (c — C%)'x - 0 is

nonnegative for each x € vert X. Now, in order to perform a dual simplex iteration in row /,
we need to generate a column corresponding to a vertex x of X such that its updated value
B,Cx + ¢, in row i is negative and yields the smallest value for the ratio {(c — CF)'
x —0}/ ~ {B,Cx + v, among all such columns. To accomplish this, consider the following
linear fractional program.
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(c-CW)'x—8
- lB,CX +¢’I}
Note that if one solves this problem using Charnes and Cooper’s [3] method by letting

u= (1/ - {B,Cx +¥,;}) 2 0 and v= ux, then at optimality, we will have v > 0 since SD(7)
is feasible by our original assumption. This transformation converts LFP to the linear program

minimize {(c — CF)'v—0u: Av—bu >0, BCv+yu=—1,u20v2>0]

LFP: minimize tAx 2 b, x 2 0}.

Thus, instead of solving each subproblem from scratch using Dantzig-Wolfe’s decomposition,
one may update the solutions to subsequent subproblems through dual simplex iterations as
indicated above. Note that this is a general technique which one may adopt to perform a sensi-
tivity analysis on right-hand-side perturbations within the context of Dantzig-Wolfe’s decompo-
sition method.

REMARK B: It has been conjectured that the "nearer” the solution to the linear relaxa-
tion of a mixed integer program is to a solution of the orginal mixed integer program, the fewer
the number of Benders’ cuts that will be required to solve the mixed integer program. The dis-
cussion is this paper tends to support this statement in the following manner.

Suppose that it turns out that LP2 has an optimal solution (x* y*) satisfying
y*€YNQN. Let z*= c'x* + d'y* and let (m* a* B*) be a dual optimal solution to Prob-
lem LP2. Then, the strongest surrogate constraint (25) is also the Benders’ cut which would be
generated through SP(y*). Hence, using Lemma 2, it follows that the Benders’ master problem

minimize z
subjectto z = d'y + (f— DyYnm* + bl *
yeyni

with the single cut (25) has (z*, y*) as an optimal solution. Thus, it is possible for the pro-
cedure to terminate after generating a single Benders' cut. In any case, if one is applying the
usual Benders’ scheme to solve Problem P2, then the procedure will terminate at the particular
iteration at which the current master problem yields y* (of value z*) as an optimal solution.
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ABSTRACT

Consider a regulated monopolist whose current profits would be maximized
if they couid charge a price p. where p exceeds the current market price. By
reducing production below current consumer demand the monopolist can create
an illusion of a shortage and induce the regulator to allow a price increase.
Conditions are given for which the production rate that maximizes the
monopolist's expected discounted profits over an infinite horizon will have the
property that the amount of unsatisfied consumer demand will be a nonincreas-
ing function of current market price.

1. INTRODUCTION

Consider a monopolist facing a demand curve D(p). If the cost of producing x units is cx
then the firm would like to charge the profit maximizing price p, maximizing the revenue
(p — ¢) D(p). Due to regulation the monopolist cannot immediately attain a price of p. How-
ever, by producing less than D(p), the demand associated with the price p, the monopolist can
create the illusion of a shortage; this shortage induces the regulatory agency to increase the
price. Although the economic grounds for the regulator to base his pricing decisions on the
observed level of excess market demand may be scant, regulatory agencies in several industries
behave in this fashion. For example, the degree of market disequilibrium in the natural gas
industry is a crucial factor in the determination of the regulated price. Owen and Brautigam
note [9], that "Producers are sometimes alleged to ‘hold back® or delay production until regula-
tors raise prices in the future.”

Assuming the current price is p with p < pand p > ¢, the monopolist must trade off the
profits lost by not satisfying a portion of current demand against the future profits that can be
gained by holding back production in order to induce a price increase. Our approach utilizes
the concept of continuous time and semiMarkov decision processes. (Markov decision models
in which the firm controls price and not production have been analyzed eisewhere (see [3], (4],
and [8].) At each point in time the state of the process is the (regulated) price at which the
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monopolist's production can be sold; the monopolist’s action is the rate at which the product is
produced or, equivalently, the amount of consumer demand the firm chooses to leave
unsatisfied. The regulator’s willingness to increase price depends on the current price as well as
the consumer demand that the firm leaves unsatisfied. Thus, it is natural to attempt to deter-
mine whether the optimal production strategy of the regulated monopolist increases in the regu-
lated price p and, more importantly, whether the excess or unsatisfied consumer demand associ-
ated with its production strategy decreases as the price increases. Our goal is to derive condi-
tions which ensure that the amount of unsatisfied consumer demand is a nonincreasing function
of the price.

In Section 2 we describe the two models analyzed in this paper. Sections 3 and 4 are
devoted to a characterization of the manner in which the firm’s optimal production strategy
depends on paremeters such as the current price, the discount factor, and the length of the
planning horizon. Finally, Section 5 suggests an extension of our model.

2. MODEL DESCRIPTION

In both models to be considered the monopolist observes the price p at which its product
can be sold. This price is set by the regulatory agency. When the price is p, demand for the
product occurs at an instantaneous rate D(p). While the price is p and the monopolist’s output
rate is y < D(p), the monopolist earns profit at the rate (p — c)y, where c is the true constant
marginal cost of production.

Our two models differ in the manner in which the monopolist's production decision
affects the evolution of the product’s price. In model 1 we assume that at any instant during
which the price is p and the amount of unsatisfied consumer demand is x, the price increases to
p + 1 in a time that is governed by a Poisson process with rate A (p, x). Naturally, that amount
x of unsatisfied consumer demand satisfies x = D(p) — y. In model 2 the price increases from
ptop+k k=1,2 3..., with probability f(k) after a time that is governed by a Poisson
process with rates A (x). For both models we assume profits are continuously discounted at a
rate a and the monopolist wishes to maximize the expected discounted profit earned over an

infinite horizon.

The firm is not allowed to select the price but rather is restrained by the regulatory
agency. Determining the firm’s marginal cost curve is no easy task for the regulatory agency
aad in this case the agency will make its inferences based upon the firm’s response to the

agency’s actions.*

The agency presumes that the firm has an increasing marginal cost curve as depicted in
Figure 1. With the price given and p < Pg the firm will set its production so as to equate mar-
ginal cost and price. Moreover, it is clear from Figure 1 that if the firm’s actual marginal cost
curve were as shown, then excess demand (D(p) — y) decreases with price while production
increases. From the agency’s perspective, the desired price is pg, for increasing the price
beyond pr will not cause production to increase and excess demand vanishes at pg. Thus, the
agency will allow price to increase until excess demand vanishes and market is cleared.

*See D.P. Baron, [1], for another approach.
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FiGURE 1. Agency’s perspective

In fact, the firm has constant marginal cost (and < pg for otherwise the market would not
clear and the agency would revise its estimate of pg upward). Consequently, the agency eventu-
ally allows the price to reach the monopolistic price.

. Finally, the speed of the price adjustment varies directly with the disequilibrium as meas-
i ured by the excess demand x (see assumption 2 below).

3. ANALYSIS OF MODEL 1

: : We begin by anlyzing the dependence of the optimal production strategy on the current
- § price. Defining /= [0, 1. 2, ...} and # (p) = (p — ¢)D(p), our results require the following
'i.z assumptions:

1. A(p. x) is a differentiable function of x.
2. Ap. x)) 2 A(p. x)). x3 2 x;.

3. Ap.0)=0 p€l

B

4 Ap+1, x)LA(p x), pE€EL
S A(p+ L x)—A(p+1, x)<A(p. x))— A(p. x)). p €L x3 2 x).

6. A(p+ 1, x)M(p+1, x) KA x)/A(p. x}),p €1, x3 2 x4.
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Y VR

. .
~

D+ D@p).pel

:

8. Thereisap € Isuch thatw{(p) 2 w(p) forallp € I

9. wp+D)—-7(P)LaP)—7(p~1),p=c+2 ....p

LN

10, n(p+1)E<n(p).p=2.p+1,....

b

Assumption 1 is made for the sake of convenience. Assumption 2 reveals that the larger
the excess demand the greater the tendency for the price to rise. If the likelihood that the
regulator will grant a price increase increases with the observed level of excess demand then
Assumption 3 will be true. This is true in the natural gas industry (see [9]). Assumption 3
states that the firm may maintain the current price if it so desires by producing exactly what the

j consumers demand. Assumption 4 implies that at higher price levels it is more difficult for the
- firm to induce price increases, whereas assumptions 5 and 6 imply that at a higher price an
i increase in unsatisfied demand has a smaller effect on the rate at which the price increases. We
H note that Assumptions 5 and 6 are trivially satisfied if A (p, x) is independent of p. Assumption
‘ 7 merely asserts that the demand curve for the monopolist’s product is downward sloping.
R Assumptions 8-10 are valid for a variety of reasonable demand curves including D(p) = ae™ %
- (a. b>0), D(p)=p*(k > 1), and D(p) = a — bp (a, b > 0). Finally, we make the rea-
' ] sonable assumption that whenever the current price is p, the monopolist will never produce at a
rate exeeding D(p). This is reasonable because any production in excess of D(p) will earn no

- revenues and (by Assumptions 2 and 3) will have no effect on the future price. This assump-
-~ tion (coupled with Assumption 7) allows us to assume that the set of possible actions for each

price is a finite set.

SR SN

We now define V(p) to be the maximum expected discounted profit earned over an
infinite horizon when the current market price is p. It follows that

n V(p) = 04?483(,) J(p, x),

where Jo. x)={p=cYD@P) = x)+alp, x) Vi + D)/A(p x)+a).

Let x{(p) be the largest value of p attaining the maximum in (1). Our goal is to derive condi-
tions which ensure that x (p) is a nonincreasing function of p;, that is, the higher the price the
smaller the amount of consumer demand that will be left unsatisfied by the firm.

Our analysis of the behavior of x(p) will be facilitated by the study of a modified version
of the infinite horizon problem described above. Towards this end we fet V,(p) be the max-
imum expected discounted profit earned by the firm over an infinite horizon when the current
price is p and at most » price increases are permitted. It follows that (Vo(p) equals 7 (p)/a if
p2cand0if p < ¢)

2 v - >

2) 2 (p) Kf‘n‘agw J(p, x) n21,

where Ju. x)={(p=) D@ =x)+ Ap, IV, (p + DY/ A (D x) +a).
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Our main result will require the following lemmas. The trivial proof of Lemma 1 will be omit-
ted.

I

LEMMA 1: If Assumptions 8 and 9 are valid, then for # 20 and ¢ <
p<pV,(p)2np-1)a.

LEMMA 2: If Assumption 10 holds, thenforp > pand n 2 0 V,(p) =~ J,(p. 0).
PROOF: The result is clearly true for » = 0. We therefore assume the resuit to be valid
for n — 1 and verify that it remains valid for n. To prove this observe that
@+Ap x)N, (. 0)= (@ +2(p, x))m(P)a [by (2)}
2 - DP)=-x)+r(p xIn{p + V/a [by Assumption 10)
= (& +Ax{p, xJ,(p. x) [by the induction hypothesis].

Thus, the induction hypothesis implies that J,(p, 0) = = (p)/a so the above inequalities imply
that J,(p, 0) 2 J,(p. x) which is the desired result.

P N

W

v wasie

LEMMA 3: If Assumptions 4, 7, 8, 9, and 10 are valid, then for n 2 0 and
c<psp-1L
3) aV,p+ D) ~-n(p) <aV,p)-n(p-1).

PROOF: We prove (3) by induction. For n= 0 (3) reduces to Assumption 9. We
: therefore assume that (3) is valid for » — 1 and verify that it remains valid for n. Define
‘ x(n, p) to be the largest value of x satisfying V,(p) = J,(p, x(n, p)). Let x = x(n, p + 1).
Since D(p + 1) € D(p), x s a feasible action when the current price is p. This implies that

. @) aV,(p) 2 allp—)DE)~x)+r(p, X)V,_,(p + DI/ A (p. x) +a).
(5) aV,p+D=allp+1-c)(D@E+1)-x)

+Aap+1, )V, (p+ 2}/ (p+1, x+a) (by 2))
Salp+1-a)DE+D=x)+r( X)V,i(0 + DA (P, x) +a)

Dy

[by Lemma 1 and Assumption 4].

Together (4) and (5) imply
(3] a(V, 0+ 1D~ V,pN<Kalp+1-)D@E+D)-x)—(p~c) (D@P)-x)

+A 00 XY Vi@ + D~ V10 + DIWA(Q x) +a).

4 'S q IR i
H n& b ..
. ot il e g b

Note that
m P+H1-c)DP+D=-x)-(p-ca)DP)—x)=7(p+1)~n(p)-x

€r@)-n(p~1Dlby QD andp +1 < pl.

Also observe that for ¢ < p < p— 1 the induction hypothesis implies that a(V,_,(p +
2)- V,i(p+ 1)) 7w (p+ 1) — 7 (p) while Lemma 2 and Assumption 8 imply

aVp G+ D=V PN =@+ D)-a@ <@ -G~ 1).

APy

o
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J Thus, for ¢ < p € p — 1 it follows that
N
(8) aV,_,(p+2) -V, 1+ <7+ ) —m@)<nlp)—mw(p~D.

i Together (6)-(8) imply that
' a(V,p+ 1) -V, <n(p)~m(p~1) c<p<p-1

which is the desired result.

2 Lemma 2 implies that for p 2 p the firm’s optimal policy is to satisfy all consumer

; demand by producing at a rate D(p). We now show that for n 2 0 and c S p < p-— 2,
x(n, p) 2 x(n, p +1). Coupling this result with Lemma 2 we see that for all n and p 2 ¢
the firm’s optimal level of unsatisfied demand (the amount of market disequilibrium) is a

nonincreasing function of p.

ko

THEOREM 1: If (1)-(10) are valid, thenforn 2 0andc < p £ p— 2.

-

cemaa waada

9) x(n, p+1) < x(n p).

PROOF: Observe that (9) will follow if we can prove that
’ } 10 L+, x)—J,(p+1, x))20=> J.(p, x3) = J,(p. 1) 2 0

SR holdsforn 2 0, p+1<p—l,and D(p+ 1) 2 x; 2 x,.

We now proceed to verify (10). After some algebraic manipulations J,(p + 1, x;) — 3
J,(p + 1, x1)2 0 can be shown to be equivalent to

ﬁ, (11) aV,p+2-m(p+1) 2 @E+1-alx;— x))
" +xA 0+, x)=xA @+ 1L, QA +1, x)=-A(+1, x))).
n
L By (11), (10) will hold if the left side of (11) is a nonincreasing function of p and the
R right side of (11) is a nondecreasing function of p. Since p + 2 < p, Lemma 3 implies that the
3 left side of (11) is nonincreasing in p. Since Assumptions 2 and 5 imply that g -
-4 alp+1-c)x;— x))/A(p+ 1, x;) = A(p + 1, x)) is nondecreasing in p, the right side of ‘
ael . A .
* (11) will be nondecreasing in p if

xA@+ 1L x)—xr(p+1, x) xA(p, x) = xA(py, x3)
Ap+ L x)-Ale+1l, x) T A x)~Alp x) 4

(12)

35~

Upon simplification (12) is seen to be equivalent to (x;— x;) A (@ + 1, x)A (p, x;) —
Ap+1, x)A{p. x;)} 2 0. Since x; 2 x;, the last inequality follows from Assumption 6.

s This completes the verification of (11), and the proof of Theorem 1 is complete. i
¢

’J The following Lemma relates V,(p) to V(p). z
v

LEMMA 4: For all p lim,— V,(p) = V{(p).

PROOF: Since 7 (p) is bounded above by 7 (p), the result follows directly from Lemma
1 of [2].
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Lemmas 2 and 4 imply that for » = p, V,(p) = V(p). Theorem 1 plus Lemmas 2 and 4
now imply that V(p) = J(p, 0) (p 2 P),and x(p + 1) € x(p), (c S p € 7~ 2).

Let x,(p) and V,(p) denote the dependence of these quantities on the discount factor a.
We now show that x,{(p) is a nonincreasing function of the discount factor a. In order to
prove this result, we first consider a finite horizon semiMarkov decision process formulation of
the problem. We use the technique of Lippman [6] in which the system is observed and the
production rate can be changed only at discrete points in time, namely those corresponding to
price increases and certain null events. These null events, which do not change the current
price, are introduced in order to make the time between observations independent of the state
and action and they render the probiem equivalent to a discrete time Markov decision process.
After analyzing the discrete time Markov process we will let the horizon length go to infinity
and exploit the equivalence of this formulation to the original continuous time problem to get
results for our original problem, that is, the inifinite horizon problem in which the production
rate can be changed at any point in time.

We now consider the system to be observed only at times when price increases or null
events are observed: The time between observations is exponentially distributed with parame-
ter A = €s;xp A{p. x) = A (0. D(0)), where the last equality follows from Assumptions 2 and

P

x€0(p)
4. The state of the system is p, the current price, and the action is x if production is occurring

at a rate D(p) ~ x. The probability that the next observation point is occasioned by a price
increase is A (p. x)/A while the probability that the next observation point is a null event is
1—-a(p, x)/A.

Let W,,(p) be the maximum expected profit earned by the firm when n observation
points remain, the current price is i, and the discount factor isa. Then

(Wo.a(ﬂ)=' 0)
13 Wooap)= max G,.(p, x)/(A +a), n21,

0<x< D(p)
where
Gralp. x)=p(D(P) — x) + A (p. xX)AW,_, . (p) + AW,_, ., (p)

and
AWn.a(p)- Wn.a(p + 1) - wn.u(p)-

Let x,, (p) be the largest value of x attaining the maximum in (12). We now prove that
if Assumptions 1, 2, 3, 7, 8, and 10, and w(p + 1) 2w (p)(p=1c. c + 1. ... p), are valid
then x, . (p) is a nonincreasing function of . By Theorem 1 of [S] and Theorem 1.1 of {10]
this will imply that x,,(p) < X4, (p) (@, 2 a,) which is the desired result. Before proving this

result we require the following lemma.
LEMMA 5: If Assumption 10 holds, thenforn 2 0and p 2 p, W,,(p) = G,.(p. 0).

PROOF: The proof is virtually identical to the proof of Lemma 2 and is therefore omit-
ted.

VOL. 28, NO. 3, SEPTEMBER 1981 NAVAL RESEARCH LOGISTICS QUARTERLY




470 S. A. LIPPMAN AND W. L. WINSTON
J LEMMA 6: If Assumptions 1, 2, 3, 7, 8, and 10 are valid and 7w (p + 1) 2 7 (p) is valid
forc < p<pthenAW, (p) 20(c<p<p-1).

PROOF: We prove the result by induction on n. For n = 1 the result follows immedi-

“'_ ately from w (p + 1) 2 w (p). Assuming the result for » — 1 and letting x = x,.(p + 1), (13)
' andx—~ D{(p + 1) + D(p) < D(p) imply
(14) A+a)AW,,(p) 2 G, ,(p+ 1, x)=G,,(p. x=D(p+1)+ D(p))

’ =A-A@ x-DP+D+DENAW, (@) +A(p+ 1, X)JAW,_ . (p + 1).

: For ¢ € p < p— 1 the nonnegativity of the last expression follows from the induction
{ hypothesis. To complete the proof it therefore suffices to show that W,,(z) > W,,.(p — 1).
! To prove this, note that 7 () 2 7 (b — 1) the induction hypothesis, and Lemma § imply

+K(5“‘ l. }n.a(ﬁ - l))W_L,(TI)
+ A~AG -1 %0~ D) Wo 1o — DY +a)
S@)+ AW, VA +a)= W,,(5)

j Woa - D= Gp—c—-DDE-1D-%0G-1)
)
i
i

] This completes the proof of Lemma 6.

We can now prove

THEOREM 2: If Assumptions 1, 2, 3, 7, 8, and 10 are valid and w(p + 1) 2 n (p) is
validforc < p < p— I, thenfora; > ajand ¢ € p € 5 ~ 1 %,4,(P) < x,0, ().

:'_" PROOF: By reasoning analogous to that used to justify (10) it suffices to prove that
B Gra (P x2) = Gpa,(p. x1) € Gpg (P x2) — Gpa,(p. x))
3 4 holds fora; > a,, and x; > x|, and ¢ < p € p — 1. By (13) this inequality is equivalent to
L. (s A @ x) =M X)) AW, 1, 0) = AW, 1. () 0,
% By Assumption 2, inequality (15) will hold if

(16) AV, 10,(P) €8V, 10,(P).ay>a, c S p<Pp- 1.

To prove (16) by induction note that for n=1 (16) follows from
/(A +a,) € V/(A +a;). Assuming that (16) is valid for » — | we can verify it for n by

observing that
A+a)W,, (p) 2 Gy, (p+ 1, x1) = Gy, (p. x1)

and
A +a) W,.,,z(p) < G,,_.,z(p +1, x)~ G,,_.,z(p +1, x5),
where x1= x,.{(p + 1) and x;= x,,(p).
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J These inequalities imply that

! (A +a)lA Waa,(p) — A W,,',,z(p)} 20 +1, x)@A Wera,p+ 1)
AW, 1q,(p+ 1)
+A=NQp x)BW, 10, (p) =AW, . ()]

20

where the last inequality follows from the induction hypothesis. This completes the proof of
Theorem 2. By the remarks following Lemma 4 the hypotheses of Theorem 2 also imply

]
] xa,(p) € x, {p).

j We now characterize the dependence of x,,{(p) on n. More specifically we show that the

. hypotheses of Theorem 2 imply that x,,, .(p) 2 x,.(p) isvalid for c L p < p-1. If we

;a} assume that the firm wishes to maximize its expected discounted profits over a finite horizon of
length T < oo and we define X, ,(p) to be an optimal action when a time / remains, Theorem 4 3

i of [6] and the above result will enable us to conclude that X,.a{P) 2 X, o{p) for 6 2 1.
i

THEOREM 3: If the hypotheses of Theorem 2 are valid, then for » > | and
C < 14 s 5 - l xn+'x.<l(p) ? xn.u(P)-
‘ PROOF: The result will follow if we can prove that
! Gn+l.a(p- X2) - Gn+|.a(p- X|) 2 Gn.u(p' Xz) - Gn.a(p' X|)
holds for n 2 1, x;> x;, and ¢ £ p < p— 1. By (13) this inequality is equivalent to

ol A x)=A(p x))DAW,,(p)= AW,_,,(p)) 2 0. By Assumption 2, the last inequality
X : will foliow if
: amn AW,.(p) 2 AW, (p).n2 1, c<p<p-1.
. ‘ The proof of (17) is similar to the proof of (16), and is therefore omitted.
" 3. ANALYSIS OF MODEL 2
-
-y
{,‘/; We now characterize the dependence of the optimal production strategy for Model 2 on
by the current price. Our results require the following assumptions:
: I A(x) 2 A(xp), x; 2 x
) . 12, A (x) is differentiable
4 13. A(0)=0
k! 14, xfA(x)) +a) 2 x/A(x)) +a), x;> x;
) 15. Thereisap € Isuch thatw (3) 2 w(p) forallp € I
16. For p € I, n(p) is a concave function of p, that is w(p + 1) ~ n(p) < =(p) —
wn(p—1).
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J Assumption 14 is the only condition which requires any explanation. If A (x) is concave, then
i Assumption 14 will be valid. To show this define 4 (x) = x/Q (x) +a). Then for any xo 2 0
h'(xg) = A (xg) +a — xp' (x0)/ (& (xo) + @)®. Together Assumption 13 and the concavity of

! A(x) imply that A(xg) = A(0) + xA'(xg) = xoA'(xg). This shows that h'(xg) > 0, which

implies Assumption 14.

We now define T(p) and 7,(p) to be the analogs (for Model 2) of V(p) and V,(p).

Then
.? (18) T(p) = ocTEX ) H(p, x),
3 where
i’ Hp )= (0= ) (DG = x) +A () T LEOITG + k)0 (x) +a)
Py
.’ and
1 -
R (19) T.(p) ogf&ﬂgm H,(p, x),
3 where
. k=oo
B Hp, x)=1{(p—c)(DP)~x) +A(x) T ST, 1(p + k)}/ A (x) +a).
k=1

i We also define x(p) and x,(p) to Le the largest values of x attaining the maximum in (18) and
o (19), respectively. The proof of the following lemma is virtually identical to the proof of
‘ Lemma 2 and is therefore omitted.

LEMMA 7: If Assumptions 15 and 16 are valid, then for n 20 and p 2 p
T,(p)= H,(p. 0).

0 As in Section 3, we now focus our attention on showing that for c K p < p—1,
3 x,(p + 1) € x,(p). Before proving this result we require the following Lemma:
; LEMMA 8: If Assumptions 15 and 16 are valid, then for p > cand n 2 0.
o k=oo kmoo
& 0) a Y fOT, p+1+k)-n(p+D<a Y [T+ k) —n().
f-‘ k=1 kw1

PROOF: 1t sufficies to show that for each & 2> 1
(21) aT,_(p+1+Kk)=m(p+ 1D €aT,_,(p+k)—n(p).

For n =1 (21) reduces to Assumption 16. We therefore assume that (21) holds for
n — 1 and verify that (21) holds for n. Letting x = x,(p + 1 + k) we see that a7, (p +
L+ k)= H,(p+ 1+ kx)and

aT,(p+ k) ZaH,(p+ k x).
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The last two statements imply

L R

p+k—~c)DpP+k)-x)

J=1
Since
: P+hk+1-dDp+k+D-x)-(p+k-)(Dp+k)—x)
t‘ =r(p+k+D-—nk)—x<nlp+1)~m(p) [by Assumption 16}
j and
!

a(T,_p+k+j+VD)-Tp+k+))<alp+1)—n(p),
i [by the induction hypothesis]

(22) implies that
alT,_p+1+k)—-T_p+ k) L7r(p+1)—-7m(p),

which is equivalent to (21).

. THEOREM 4: Forn 2 0andc < p < p-2
p (23) x,(p + 1 < x,(p).

strate thatfor D(p + 1) 2 x; 2 x,,p < p—2,andn 2 0

) Hyp+1. x)— Hyp + 1. x) > 0= H,(p, x3) — H,y(p, x)) > 0.

""’_" To show this, note that H,(p + 1, x;) — H,(p + 1, x;) 2 0 may be shown to be equivalent to
» koo

: ‘ (24) A=A a Y T p+k+D—am(p+1)

N 1} k=1

.1 > (0 41— 0) Iy () +a) = x,0 () +a)l.

F ol

""} By Lemma 8 the left side of (24) is a nonincreasing function of p. Since Assumption 14

-7
A Rt T Le WWWW Ny

.J (22) alT,p+1+K)-T,p+K)<alp+k+1-c)D(P+k+1)-x)

AT ST+ k+j+ 1D = Toyp + & + /0 (%) +a).

PROOF: The proof is similar to the proof of Theorem 1. As before, it suffices to demon-

implies that the right side of (24) is a nondecreasing function of p it follows that (24) implies

H,(p. x5y — H,{(p, x;) 2 0. This completes the proof of the theorem.

B o sl

1 _ W,(p) = W(p). Together with Theorem 4 plus Lemma 8, these facts imply that
o A x(p) 2 x(p+1) (c £ p<Pp—2) and that in the unmodified infinite horizon version of
{ Model 2 the firm should produce at a rate D (p) for p 2 p.

.k Unfortunately, all efforts to determine how the optimal production policy for Model 2

depends on the discount rate and the length of the horizon have been unsuccessful.

As in Section 2, it easily follows that lim W,(p) = W(p) and that for n 2 p,
=00
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5. EXTENSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

| One obvious defect of our model is that decreases in price are not allowed. A model
3' which allowed for the price to decrease from pto p — | in a time governed by a Poisson pro-
-‘ cess with rate u (p, x) (withu (p. x3) € u (p. x|)) as well as increase from pto p + 1 in a time
. governed by a Poisson process with rate A (p, x)} A (p. x;) 2 A (p, x;)) would be of obvious
interest. Unfortunately, we have been unable to obtain characterizations of the optimal produc- ~

tion policy for such a model.
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ABSTRACT

Moment and maximum likelihood estimates (m.Le’s) are investigated for
nonparametric and parametric models for a single server queue observed over a
random time horizon. namely. up 1o the mth departure epoch. Also. mlc s of
the mean imerarrival time and mcean service time in an M/ M/1 qucue ob-
served over a fixed ume-interval are studied  Limit disiributions of these esu-
maies are obtaned without imposing steady stite assumptions on the quede-
SIZC OF Wt timie processes.

1. INTRODUCTION

The theory of queues as developed so far is largely a descriptive theory, namely, it is con-
cerned with the probabilistic structure of the models and the behaviour in finite time 7 as well
as in the limit as 1 — oo of the processes arising from these models. Relatively less has been
done on a prescriptive theory dealing with the statistical analysis, design and control of queue-
ing systems. Yet from the practical point of view these latte - aspects are very important. Thus,
for example, the management of a service facility subject to congestion and wishing to design
an efficient queueing system should be in a position to estiraate the various parameters of the
model on the basis of data collected at the facility.

The earliest paper on problems of statistical inference. from queueing models seems (o be
that of Clark [4] who investigated the problem of maximum likeiihood estimation of the param-
eters of an M/M/1 queue in equilibrium. While this paper is of historic importance, the more
substantial investigation of these problems was carried out by Cox [5] and Wolff [14). The
work of Cox contains several ideas, but no major results seem to emerge. Wolff discussed
maximum likelihood estimation and likelihood ratio tests for a class of ergodic queueing models
which give rise to birth and death processes (including the queue-length process in M/M/s and
related systems). Since these processes are continuous time Markov processes, Wolff was able
to derive limit distributions of the estimates and test statistics as a direct application of
Billingsley’s {3] results for Markov processes. The Markov property of the queue-length pro-
cess and the assumption of steady state are the essential features in Wolff’s study as they are in
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Billingsley's. For further work on the M/M/1 queue see Harris [8), Jenkins [10), and Samaan
and Tracy [13]. Benes [2] ireated the estimation problem for the M/M/ system. Goyal and
Harris [7] obtained maximum likelihood estimates of the parameters of a queueing system with
Poisson arrivals and state-dependent service, again assuming steady state. Henningsen [9]
investigated the M/G/1 queue in equilibrium and obtained estimates for the arrival rate and
the parameters of the service time density. Crane and Lemoine [6] have applied simulation
techniques to the problem of estimating the steady state mean waiting time in a single server
queue. In their recent monograph, Basawa and Prakasa Rao (1] discuss examples of inference
for systems such as M/E,/1 and E,/M/1, again within the framework of Billingsley [3].

The objective of this paper is to consider a single server queueing model and derive ‘rea-
sonable’ estimates for the interarrival and service time distribution functions (d.f.’s) and their
means. The processes arising from this model are not always Markovian, nor do we assume the
existence of steady state. Our estimates are not necessarily maximum likelihood estimates, but
have a simple structure of intuitive appeal and reduce to m.l.e.’s in special cases. The estimates
of the means are moment estimates and those of the d.f.’s are empirical d.f.’s. Limit distribu-
tions of the estimates are obtained using direct and simple arguments.

In Section 2 we study the properties of moment estimates of the interarrival and service
time means, and also the estimates of the corresponding d.f.’s in a G/G/1 queueing system
observed over a random time horizon (0, D,]l, where D, is the nth departure epoch. The limit
distributions of these estimates are obtained without imposing any restrictions on the traffic
intensity. Section 3 is concerned with the maximum likelihood estimation of the parameters of
a G/G/1 queue, using the same sampling plan as in Section 2. In Section 4 we discuss m.l.e.’s
of the interarrival and service time means in an M/M/1 queue observed over a nonrandom
time-interval (0, 1), and study their properties as + — o, again without any restrictions on the
traffic intensity. The problem of hypotheses testing will be considered in a forthcoming paper.

NOTATION: We shall use => to denote convergence in distribution. The normal ran-
dom variable with mean u and variance o will be denoted by N,(, o2), and the random vec-
tor having the bivariate normal density with means u |, u ; and variance-covariance matrix £ will

My
be denoted by N, e Z [. As usual, a.s. means almost surely.

2. THE G/G/1 QUEUE—-MOMENT ESTIMATES

Consider a single server queueing system in which the interarrival times {4, k > 1} and
the service times {v,, & 2 1} are two independent sequences of independent and identically
distributed nonnegative random variables with d.f.’s F and G respectively. Assume that the

moments
() E(u) = a, Var(y,) = a}
(2) E(Vk) - b. Var(Vk) = 0'22

are all finite. The traffic intensity of the system is then g = b/a; also, let n = max(1, p). We
assume that the initial customer arrives at { = 0. Our sampling scheme is to observe the
phenomenon until the first 7 customers have departed from the system and note the service
times of these n customers, say {v,, v,, ..., v,). Lel the nth departure epoch be D,, and also
observe the interarrival times of all customers who arrive during (0, D,]; thus, we obtain
Quy, uy ..., uy‘). where
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]
J 3) N,=N,(D,) = max{k: uy+u,+...+u, < D,}.
. 1 Clearly, N, 2 n. For the means a, b we propose the estimates
| @ L sy, 51
a, = — u, by=— Y v,.
\i n NA ; ! n n 7 !

It should be observed that the estimate 13,, is the usual sample mean, whereas 4, is based on a
random number of observations. It would be interesting to compare a4, with the ordinary sam-
ple mean

ce l n A
&) ay= - ; u;.

-t

It turns out that asymptotically a, and a} display similar behaviour, namely, they are both con-
sistent estimates of a and asymptotically normal, with a, having a smaller variance. The obvi-
ous independence of a} and b, is used to establish the asymptotic independence of the esti-
mates (4). These properties are proved in Theorem 1 below. We need the following prelim-
inary result, which will be proved in the appendix.

.

candh hadi b

LEMMA |: Asn — o,

(6) -'l; N, — 7n in probability.

THEOREM 1: As n — o,

(i) @, —a, b, — bas., and

_Vné, - a) “o
W e 6, -] Mo

»

ocin 0
0 a il

PROQF: (i) The strong law of large numbers gives

l n l n
N -;Izu,-ﬂa.;;v,ﬂb as.

Since (6) implies that N,(D,) | o as n — oo we also obtain

1@
(8) N Iz u,—a as.
as n — oo. We have thus proved both statements in (i).

(ii) We first consider the limit distribution of v (4% — a), Vr (b, — b), where a7 is the
sample mean (5). On account of the independence of the sequences {u;} and {v,] we have

Jn (@t - a) ol [¢7 O
9 = N, o’ |0 o}

Vn (b, - b)
by the central limit theorem. The difficulty is that our estimate 4, is based on N, observations
where (3) shows that N, depends on D, and hence on {v,}. However, we shall show that this

T T RS
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dependence of a, and 5,, disappears in the limit as n — oo, The desired result (ii) will be
proved via the Cramér-Wold device, if we show that for arbitrary real numbers a, 88,

h)
(10) avn (d, — a) +BVn (b, ~ b) =» N, ‘o. a? 5"'— +pza%l.

To this end, we write the left side of (10) as

11) {u

The limit distribution of the term within the first pair of brackets in (11) is given by (10) on
account of (9). Therefore, the desired result (10) will follow if we show that the term within
the second pair of brackets in (11) converges to zero in probability. Now

1/2
nl] (6* — a) +BVn (b, — b)

+a

/2
Vn (@, - a) - [nil (@ - a)l.

V2 1/2 ' 1/2 1 v,
u n ne n
(i2) \/_r;(a,,-a)‘-'-n-] (Gt—a)= llW:] -l;'-] W 'Z(u,—a)

+]1L
n

1/2 1 Ny 1 "
[_N)” ?_(u,-— a) ~ —n ?(u,— al.

First, we note that by the Central Limit theorem applicable to random sums (see Billingsley
{31) it follows, in view of (6), thatas n — oo,

N
) B 3
(13) *&:”—2 'Z (u; — a) = N0, o)
and that
7 |
14) —7 L w—a)=- —5 L lw—a)—~0
N9 h 1

in probability. Using (13), (14) and (6) we see that the right side of (12) converges to zero in
probability as n — oo, Thus, (10) is proved and the proof of Theorem 1 is complete.

For the d.f.’s Fand G the natural estimales are the empirical d.f.'s
. N4 . n
(1s) Ew= - Ysw=-u, 6=L3Ts0v-v)
Ny 5 n g
where 8(x) = 0 for x < 0 and = 1 for x 2> 0. The asymptotic properties of these estimates
are given by the following theorem. Its proof is similar to that of Theorem 1 and is therefore
omitted.
THEOREM 2: Forallu > 0, v > 0, we have as n — oo
1)) F,,(y) — F(u). G,(v) — G(v) in probability, and

_Vn () = F) [[ol lcu’/n 0 ”
Wl m@Gw-em|™ Yllof o <gf
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where
(16) ol=Fwll - FWw)] ol=GWI(-GWI.

3. THE G/G/1 QUEUE—-MAXIMUM LIKELIHOOD ESTIMATES

In this section we assume that the d.f.-’s F and G of the interarrival times and service
times are absolutely continuous with continuous densities f(u; 8) and g(v; ¢), where fand g
are known functions of unknown real parameters # and ¢. For simplicity of presentation we
assume that  and ¢ are scalars; the case of vector parameters can be treated in an analogous
manner. Consider the problem of maximum likelihood estimation of # and ¢. Under the sam-
pling scheme of Section 2 the likelihood function is given by

~4 n
an L, =111 f(u,;O)] {n g(v,.;¢)ln - F(X,,0)]
i |

A
where X, = X,(D,) ~ D, — Y u,. The only factor that causes any difficulty (in the sense of

1
yielding simple estimates) in (17) is | — F(X,. 8), which corresponds to the incompiete arrival
interval when sampling is terminated at the epoch D,. Consider instead

“V‘ n
(18) Li(/f. g)-l[]f(u,;O)l{[] g(v,;cb)l.
' 1
which can be viewed as an approximation to L,(f, g) in a sense to be explained later. Lelé g

and ¢ denote the likelihood equation estimators (see Rao [12]) of 6 and ¢ based on L2(f, g)
thuso,‘,'. ¢,, are the roots of the equations

il 3 Z 9
(19) — log f(u;;8) = 0, — logg(v;.d) =0
I / 2% '
The following theorem states the asymptotic properties of ] a d;,‘,'.

THEOREM 3: Under appropriate regularity conditions of f and g (see Rao (12], for
example) we have as n — oo

(i) 62—0, ¢ — ¢ in probability, and

Wnéi-e “] oln O ”
W mde-0)|™

6 211

wod | o= [ ]

PROOF: The stated properties of ¢ ; follow from the classical maximum likelihood theory
(Rao [121), while the results for 8 2 can be deduced from the classical results using the strong

Law of Large Numbers and Central limit theorem for random sum involved, namely, as
n = oo,

where

ju]

(20) !702 - [
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N,
T}— p 5% log f (u;; @) — 0 in probability
4

N

1 19 _
N )y ) log f(u;; 8) = N,(0, o,?).
The use of Lemma ] then allows us to replace the random scale N, by the usual scale n to get
the desired properties of 0 ». The asymptotic independence of 9 and ¢, can be verified via the
Cramér-Wold device as in the proof of Theorem 1. Details are ommed

R A ALE

Returning now to the full likelihood function (17), let us denote by 6,, and 43,, the likeli-

hood equation estimators based on it; thus, 8, and ¢, satisfy the equations
N|
Qb z % log f (), 8) + H(X,:0) = 0 !
(22) i—a——log glviid)=0
- 90 a
where
(23) H(x:8) = —(% log [1 — Flx: 0)]. %

Comparing (21)-(22) with (19) it is seen that b, = &2, while §, differs from 6 2. We seek con-
ditions under which the estimates 6, and 6 are asymptotically equivalent. For the purpose of
motivation we first consider the important special case of Poisson arrivals. We have the follow-

ing:

THEOREM 4: For the M/G/) queue with mean interarrival time # and service time den-
sity g(v: ¢) we have

D,
(i) 9 = — 0"==-—- u;
and

(i) Vi @, — 8) and Vn @2 — 6) have the same limit distribution, namely N,(0, 8%/n).

PROOF: (i) We have f(u;0) =07 'e “"® sothat 1 — F(u;0) = ¢ *" and
H(x;8) = x672,
The first of the Equations (19) reduces to
N
- ——4- + —— 2 u;
1

while (21) reduces to

NA ]N‘ X
'-—9——+~0-Z-!Z +02 0.

These equations yield the estimates 0,‘,’ and é,,, respectively, as given by (i),

(ii) In view of Theorem 3 (ii) it suffices 10 show that as n — oo
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Vn @, — 629 — 0in probability.
Now

a ‘/— .Xn
Vn 6,-69 x" N‘ I

since Nyn~' — n in probability by Lemma 1, and X, has a limit distribution as n — oo.

-0

COROLLARY 1: In the M/M/1 queue with mean interarrival time @ and mean service
time ¢ we have

(i) Vn @, — 8) and Vn €7 — 8) have the same limit distribution namely N,(0, 8%/n).

PROOF: The only new result is the one concerning the estimate of ¢, which is obtained
from (22).

The proof of Theorem 4 indicates that the appropriate condition for the asymptotic
equivalence of the estimates 0 and 0 2is that as n — oo

(24) 7—; H(X,,08) — 0 in probability.
This condition is satisfied in the case of Erlangian arrivals, as shown in the following:
EXAMPLE !: For the queue E,/G/1 we have

A
f(u,0)= loﬁl e Myt (k- 1!

so that

1~ Flu,8) = Z e"“’”’lkul/ !

0

and
k=1

B - Fuo)) = K i [Ru] gy

a9 ' 9? [/ -
It follows that

H(u.8) £ ku
and so

Lo <« X X o ili

7;— e < 9—2 7_;- — 0 in probability

since X, converges in distribution as n — oo,
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Under the condition (24) we are now able 1o establish the desired asymptotic equivalence
of the estimates #, and #,. We have the following:

THEOREM 5: Under the condition (24), vn 8, —8) and Va (8¢ — 0) have the same
limit distribution.

PROOF: We first approximate

1 4 1 d
— — log L,(/, —= ~— log L2(/,
7= 36 '8 »(f, g) and T og LI/, &)
by linear functions of Jn@,—-9) and \/_r;(é,‘,’ — @) in the usual manner (Rao [12] and then

use condition (24), namely,

. A 18 _ 8 o -
249) 77 |30 fog L,(f, &) 20 log L2(/. g) 0

in probability.

4. THE M/M/1 QUEUE — m.l.e.'s BASED ON A SAMPLE
FUNCTION OBSERVED OVER A FIXED INTERVAL (0, ¢l

In Sections 2 and 3 we observed the queueing phenomenon over a random time horizon
(0. D,), where D, is the nth departure epoch. This choice of observation period resulted in a
considerable simplification in the forms of the estimates and their limit distributions. Corollary
] shows that in the case of the M/M/1 queue the moment estimates coincide with the approxi-
mat: m.le.'s of the interarrival and service time means, these latter being asymptotically
equivalent to the full m.l.e.'s. However, due to the simplicity of the M/M/1 model we can
consider a likelihood function based on a continuous observation of the phenomenon over a
fixed interval (0, f and study the asymptotic properties of the m.l.e.’s as + — oo. This latter
sampling plan was used by Wolff [14] who derived the asymptotic distributions for the case
p < 1 directly from the known results of Billingsley [3] for Markov processes. In this section
we obtain the limit distributions of the m.l.e.’s without any restriction on p, using elementary
methods similar to those used in Section 2.

Let Q(r) be the number of customers present in the system (including the one being
served, if any) at time + We formulate a sample function representation for Q(r) as follows.
Let A{r) be the number of arrivals during a time-interval (0, ¢}; then A (¢) is a Poisson pro-
cess with parameter A. Let D(t) be a Poisson process with parameter u and independent of
A(1). Then clearly

(25) Q) = QO + 4() = [ 19150 dD(s)

where 1, is the indicator function of the even ¢4. Here the integral represents D(1), the
number of departures from the system during (0, t]; thus,

(26) B() = f 106-150 aD ().

The total time during (0, ¢] that the server was busy is given by
¢

(27) B(') - J‘O 10(,_)>0 dS.
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: The interarrival and service time means are given by @ = A~! and b = u~!, respectively. The

traffic intensity is p = A/u. Also, we denote ¢ = min(l, p). We need the following prelim-
inary results, which will be proved in the appendix.

d
; LEMMA 2: Ast — oo
~ (i) —Di"-)- — ut as.
Gii) —B% - ¢ in probability.
; Since {Q (1), ¢+ > 0} is a Markov process with transition intensities
|
1 Gin=a'G20,q,._,=b'0G21
it follows from Billingsley [3] that the likelihood function based on the sample function {Q(s),
41 0 < s < 1} is given by
! (28) L(a, b) « a-AWw g-ila p-DW e~ Bib
1 The m.le.’s of a and b obtained from (28) are seen to be
1
. . ' - B()
- (29) 4= =0 and b, R

We have the following.
. THEOREM 6: As t — oo,

(i) & — aas., and b, — b in probability,

: oo >l BHE %
[ W1iG-0] M o) {o bl

PROOF: (i) By the strong law of large numbers applied to A4 (¢) we obtain

4

a—\'=a as.

:, Lemma 2 yields

& G -BOM _ & _1_,
k- " DWW/t wnE m

in probability.
k (ii) We write
3 ) A - 3/2‘AI-A(I). Af.
_ (30) Vig-a)=a NIY 20

h Here A(1)/t — A a.s. by the strong Law of Large Numbers. Also, as 1 — co the distribution of
. A (¢) is asymptotically normal with mean At and variance At. Therefore, the right side of (30)

converges to N,(0, a’) in distribution.
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Next consider

B(1) — bD (1)
31 - —_——
3n s/_(b b) =1 10
D(n+1 ( )
- _E_l:_li_ _yp o)
D) D)

where v, is the residual service time of the customer in service (if any) at time . Due to the
lack of memory property of the exponential density, the distribution of v, is free of + There-
fore, writing

v—b ¢ v—b
Ji-S=2 .
D D Vi
and using Lemma 2(i) we see that the second term on the right side of (31) converges to zero
as t — oo, The first term can be written as

. D+1 1 ben
(32) (v, - b)
D(1) D(:) \/D(t) +1 ; Y

By the central limit theorem applied to random sums we obtain

1 Dt+1 _ 3
—\/-5——(5—:—1- ‘z (v, — b) =» N,(0, ).

Again, using Lemma 2(i), we find that (32) converges in distribution to

i ) - 3
Tt N, 0, %) = N,(0, b/¢).
Thus,
(33) Vi (b, — b) = N,(0, b/€).

The asymptotic independence of 4, and b is not immediately evident because of the depen-
dence of D(r) on both the sequences {«,} and {v,}. However, this independence can be esta-
blished as in the proof of Theorem 1(ii) by first considering the random variable

S _
(34) b DO 12 v,

which is independent of &, since the processes A4 (1) and D(r) are independent. We have
Vi (b*— b) = N,(0, b as before, and

Vi (G, - a) ol | O

Vigr=o| T M lof o &)

Using (35) we shall prove that

(36) avi (G, — a) + BV1 (b, — b) =» N, (0, ala® + B2bY/¢)

(35)

for arbitrary real numbers o, 8. The desired result (ii) will then follow via the Cramér-Wold
device.
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Now the left side of (36) can be written as

(&) lmﬁ (@ - a) +p§ (b* - b)l +plﬁ (b~ b) - \/;i- (b? - b)].
The limit distribution of ther term within the first pair of brackets in (37) is
N, (0, a’a® + B2b*/€) on account of (35). The term within the second pair of brackets in (37)
can be written as

[ /-_—'—-\/-T-l | 5“’<v-b)+\/3[1- A L5, - p)
) e) oo ¢ : 5005 7Dy = W
+\/Z'{ 1 5(,)(v-—b)— 1 Dm(v-—b)]
e\ o 2o R

where we have used the fact that v, — b plays the same role as v, — b (1 € i < D(r))—see
comments following (31). Using arguments similar to the ones used in the proof of Theorem
1(i) we find that all three terms in the last expression converges to zero in probability. This
completes the proof.

5. APPENDIX

Only the outlines of the proofs are given below; for details see the monograph by Prabhu
[11].

Lemma 1 is concerned with a single server queue, with notations as in Section 2, while
Lemma 2 is concerned with the M/M/1 queue described in Section 4.

PROOF OF LEMMA 1: Let W, be the nth customer’s waiting time, and /, the idle time
(if any) preceding this customer. Then
(38) W,,+| = max (0, w" + x,,+]), 1"+| - - min (0, w" + X"+|)

where X, =v,—ulk21). Let =0, S, =X, +X;+ ...+ X,(n 21). Then since
W, = 0, as has been assumed, we obtain from (38)

(39) W,,-S,,+y;,,ji,-l,+12+...+ln-—03|2"sk.

It is clear that the successive departure epochs D, are given by

Di=v, D= uy+uy+...4u_+W,_,+v,(n 22).
In view of (39) we can write
(40) Dy=vi+vy+...+v,+5_,(n21).

Now it is known that (i) if p > 1, then $, — fas., while (i) if p < 1, £, — oo as., but »~!
3, — max(0, a — b). Therefore,
D, wvi+v+..+v, 35

(41) —_—- +
n n n

— b+ max (0, a — b) = max(a, b).
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d Next let N, (1) = max {k: < |
‘ ext let N,(r) = maxik: u; + u;+ ...+ u, < t}. Then by the elementary renewal theorem,
B "'N,(1) = a~' as. Since D, — o by (41), we obtain |
! N,(D,) ‘
N (42) ND) a! as. ‘

| D,
‘ From (41) and (42) it follows that

: @ N _ NiD) D,

‘ " D, T—‘a“'max(a. b) = q :
i as required. 1
PROOF OF LEMMA 2: (i) We can write

j 44) B() = D) = [ 1g(-1=0 dD(s) 1

Y where

; (45) Sy 1ow1m0 dD(s) = = m(n) =~ inf 14(s) - D(5)) 1

and it is known that

) (46) —m(D) _ ax (0, p—\) as.
'}
. Therefore,
' én Di') - Di') + mf!) —pu—max(0, u—A) =ué as.
T (ii) We can write B(t) = t — I (1), where I(t) is the idel time during (0, ¢] and it is known
‘ that i
: 1(n) . .
B (48) —, — max (0, 1 — p) in probability.
5 Therefore,
;d-i (49) A(;Q-l—l(”—)ﬂl—max(o, 1-p)=¢. i
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ABSTRACT

A method is developed for determining the optimal policy for entry of cus-
lomers from many independent classes of Poisson arrivals o a firsi-come,
lirst-serve (for customers admitted 1o the gueue) single-server gueue with ex-
ponential service times. The solution 1echnigue utilizes a semi-Markov formu-
lation ol the decision problem

INTRODUCTION

A small but substantial collection of literature has developed on optimal control of entry
1o a queue starting with Naor's work [10] in 1969 and continuing to the present. Most of this
work has been concerned with optimal policies and their properties for queues serving a single
class of customers. In these models the reward and cost structure is the same for each custo-
mer although a customer’s reward may be the value of a random varijable.

In this paper, a model is considered in which several classes of customers arrive in
independent Poisson streams. Each class has its own reward structure in that each member of
class m receives a reward R,, for service and pays C,, per unit time spent in the system. This
generalization has obvious applications in queueing systems. For example, consider an airport
serving many classes of commercial aircraft (jumbo jets, wide-bodies, four engine jets, three
engine jets, two engine jets) in which each class has its own reward for service and cost of wait-
ing. It does not appear that the optimal control policy for such cases has been determined.

Two types of optimum control policies, the individual optimum and the social optimum,
are considered in this paper. For an individual optimum policy, join or balk decisions are based
on the expected gain of each individual customer at the time of his arrival. If his expected gain
is nonnegative he joins; otherwise he balks. Under a social optimum policy, the join or balk
decision is made based on maximizing the expected gain per unit time considering arrivals from
all classes of customers.
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A review of the literature indicates that "control-limit" policies are optimal for a single
class of customers. This type of policy specifies that a customer be admitted if the number of
customers already in the system is less than or equal to a given threshold value (the "control
limit"). If the control limit is exceeded, the customer is turned away. Naor assumed that a
control-limit policy is optimal for a single class of customers and then compared the control
limits for individual and social optima. Yechiali [13] proved that a control-limit policy is indeed
individually and socially optimum for a G//M/1 queueing system serving a single class of cus-
tomers. Subsequent work by several authors for example, see [6], [7], [8], (9], {12], and
{14]) demonstrated that control-limit policies «re optimal for single class models under even
more general assumptions.

When considering several classes of customers, the argument that the individual optimum
policy is a control-limit policy carries over directly, as shown later, from the argument for a sin-
gle class model. However, it is not possible to carry over Yechiali's argument for the social
optimum policy and a different approach is used.

Previous work with several classes of customers appears to be quite limited. Balachandran
and Schaefer [1, 2] deal with several classes of arrivals to M/G/1 queues. However, each class
has the ability to adjust its arrival rate so that the class with the most favorable net benefit
(reward minus expected cost) dominates the arrivals to the exclusion of all other classes of cus-
tomers. Furthermore, this work is based entirely on long term expected values and no custo-
mers are able to take advantage of short-lived phenomena, e.g.. 3 customer who does not
befong to the single class which dominates arriving to find the system empty will be denied ser-
vice. Edelson and Hildebrand {4] come closer to the problem dealt with in this paper. They
consider the M/M/1 model for classes with different reward and cost parameters and balking.
The claim to have considered more than two classes of customers, but no results for more than
two classes are presented, and in what seems to be a contradiction they indicate in their conclu-
sion that the solution procedure they have used (which is not specified in their paper) does not
extend to cases where "dichotomous classification of customers is not acceptable." While they
are interested in comparing revenue maximizing policies with the social optimum, it should be
noted that the solution given for the two class social optimum policy in their first example, after
appropriate adjustments for different definitions, was checked and found to yield the same pol-
icy that would be obtained by the techniques established in this paper. Furthermore, this check
provides an indication that the general techniques set forth in this paper are, in addition to
being workable, correct.

In this paper, after defining the model, it will be shown that Naor's solution for the indi-
vidual optimum for a single class of customers easily extends to M classes of customers. The
extension of his social optimum solution to many classes of customers is then made by adapting
the semi-Markov decision process technique used by Yechiali for a single class of customers.
The optimal policy is shown to be a control-limit policy and simple bounds on this policy are
presented. An example of the application of the technique to three classes of customers is
given.

THE MODEL
M classes of customers are considered. Customers of class m, m =1, 2, ..., M, arrive

in a Poisson stream with mean rate A,,. The service times of the single server are independent,
identically distributed, exponential random variables with mean [/x. Thus, the model
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represents an M/M/l queueing system with customers from M separate groups or classes.
Each class has its own reward and cost structure. Once a customer enters the system, service is
first-come, first-served, regardless of class. A member of class m receives a reward for service,
R,,. and pays C,, per unit time spent in the system. R, is required to be greater than or equal
to C,/u for all m. (Customers from any class for which this is not true would balk under all
circumstances.) For determining the individual optimal policy, each customer is assumed to be
able to determine the number of customers in the system at the time of his arrival. Also, for
determining the social optimal policy, an administrator is assumed who knows the number of
customers in the system at the time of each arrival. An optimal policy is sought; that is, a set
of join or balk decisions is sought for each class for each possible state (the total number of
customers in the system) to maximize (i) the expected return to the self-optimizing (indivi-
dual) customer or (ii) the gain per unit time of all customers (social optimum).

SOLUTION FOR THE INDIVIDUAL OPTIMUM

If an arrival from class m finds / customers ahead of him, his expected net benefit for
joining the system is R,, — (i + 1) C,/u. Since the net benefit for balking is zero, the custo-
mer will join the system if the number of customers in the system is less than . where n, is

such that
) Rm—(nsm+l)C,,,/y <0$R,,,—nsm(',,,/p,.

(Customers are assumed to join the system if their expected net benefit for joining is zero.)
Thus, self-optimizing customers of class m determine a balking point n,, such that

2) n, = [Rua/ .

where the brackets indicate the greatest integer function. (2) is a straight-forward extension of
Naor’s result for a single class of customers.

SOLUTION FOR THE SOCIAL OPTIMUM

For the social optimum problem, an administrator decides whether or not a customer of
class m can join when i customers are ahead of him. The sum of the expected net benefits per
unit time of all arrivals of all classes is shown to be maximized by a policy that imposes a vector
no of forced balking points on the customers. ng= (no,‘ Hoy «ov s ""u)‘ where a member of

class m is allowed to join if the state of the system is less than ng, but must balk otherwise.

Let 7= (ny, ny, ..., ny) be a vector of balking points. The sum of the expected net
benefits per unit time of all arrivals when the balking points given by n are chosen, is given by

M M

3) gm)= Y £\, (M R,—- Y C,L,().
m=| m=]

A, () and L,(n) are, respectively, the effective arrival rate for class m and the contribution of

class m to the expected number of customers in the system when balking points # are

employed. A,, (#) and L, (n) depend on 7 because the stationary probability that i customers

are in the system, ¢ ,{(n), depends on 7.

Rue [11) shows that the following semi-Markov decision process formulation of g(#) is
equivalent to (3):
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n* M

(4) gm) =Y o, () Y k (i, (R, — (i +1)Cp/nl.
=0 m=

where n* = max {n,}, ¢,(Ai) is the stationary probability that i customers are in the system
m
given that the balking points » are employed, and

1ifi < n,

knll) =0t i > n,

(It may be helpful to note at this point that the term A ,{R,, — (i + 1) C,,/u} is the gain rate in
state i due to class m customers joining the queue.) The work of Derman [3} can be used to
limit the semi-Markov decision process formulation to nonrandomized policies as in (4). Policy
iteration can be used to obtain from (4) the maximum gain rate and socially optimal joining
policy.

Theorem 1 justifies restricting the consideration of optimal policies to control-limit poli-
cies as in (3). However, lemma 1 must be proved first.

LEMMA I: The social optimum policy will not allow reneging.

PROOF: Suppose customer A of class m arrives at time T, and joins the system. Later,
at time T)p, customer A departs the system before he is served. The actions of customer 4
affect no customer who arrived before him. The contribution of customer 4 to the net gain of
the system over the interval [T,, Tpl)is —C, (T, — T,) < 0, his holding cost for the time he
is in the system. If no other customer arrives before customer A departs, his actions have no
effect on those customers arriving after him. If cther customers arrive during [T, Tp), the
only effect of customer A’s temporary presence in the system is to possibly cause a customer to
balk when, in fact, without the presence of A this customer would be profitable (and thus join
the system). Thus, the contribution of customer 4 to the system is negative when compared
with his not joining the system at all.

THEOREM 1: A control-limit policy is optimal for each class.

PROOF: Suppose that there exists a class m and a state i such that in the optimal policy,
p. k,(i) =1, but k,(i — 1) = 0, that is, the optimal policy for class m is not a control-limit
policy. The optimal gain rate is denoted by g* If the stationary probability of the system occu-
pying state i under policy p, ¢/ is equal to zero, then a policy which is the same as the optimal
except that k, (i) = 0 also yields g* To prove Theorem 1 for the case ¢/ # 0, consider the
following modification to the model. At the completion of a service, each customer returns his
expected net benefit for recalculation based on the current state of the system. Likewise, his
occupation costs incurred during the service just completed are also returned. The customers
remain in the order they arrived, but the administrator recomputes the expected net benefit of ﬁ
each customer based on the number now ahead of that customer and uses the given policy, p,
to decide whether or not each customer can re-enter (stay in) the system. Because there is no
discounting, the gain rate of this model is equivalent to that of the original model for the same
policy. Since the transitions are Markovian, all relevant information about the future of the
system is contained in the current state of the system. (The state of the system must give the
position of every customer to accommodate the new method of assessing costs.) A customer of
class m who had joined when i customers were ahead of him would be forced to depart when
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J the number of customers ahead of him dropped to i — 1, since k,, (i — 1) = 0. Thus, the cus-

: tomer would be forced to renege. By Lemma 1, the given policy cannot be optimal for the
4 modified or original model.

~ Since the expected net benefit for members of any class joining the system decreases as
: the number of customers in the system increases, the optimality of a control limit policy is a
reasonable result.

; It is now shown (Theorem 2) that for each class m, no, < n, . where ng_ is the socially
. optimal balking point for class m customers and n, is the individual optimum balking point for
! class m. Thus, n*= max {n, } can serve as a bound on the state space required for the policy
i m "

iteration solution of (4).

j THEOREM 2: For each class m, m S,
1

PROOF: First, the decision made by the administrator for a given arrival does not affect
the time of arrival of any customer yet (0 arrive. As previously shown, n, satisfies (1)

Ry~ (n,_+1DCpln <OLR,—n Cplr.

Suppose a customer, customer A, of class m arrives to find the state of the system i > n . Let

T, be the time of arrival of customer A4, and Ty be the time of arrival of the next customer,
customer B. In view of (1), let @ < 0 be the expected net benefit of customer A joining the
system. If all expected costs and rewards are assigned to a customer upon arrival (as in (4)),
the contribution of the interval [T,, Ty} 10 the expected net gain is « < 0 if customer 4 is
4 allowed to join. The decision regarding customer A does not affect the expected net gain of
. customers who arrived before him, but it does affect the expected net gain of those arriving
e after him. If customer A4 does not join, the state of the system found by customer B and all

- others after him is less than or equal to the state of the system if customer A4 joins. Since
R, — (i + 1) C,./u, the expected gain for a customer of class m joining when i are in the sys-
tem, is a strictly decreasing function of i, the contribution to the expected net gain of the inter-
val [Ty, T¢) for any T > Tg is at least as large when customer A balks as when he joins.
Thus, if i > n, . forcing a customer of class m to balk yields a larger expected net gain or gain
rate than allowing him to join.

— tla

3

t olle ot

f.“.’ n‘

The two theorems proved above make it possible to solve for the social optimum policy
using policy iteration or linear programming. For M classes of customers, we seek to determine
the n which maximizes the gain rate given in Equation (4). The solution technique will be
illustrated by an example. Suppose that three classes of customers arrive at a single exponential
server who has a service rate capability of four customers per unit time. The reward for ser-
. vice, cost per unit time in the system, and mean arrival rate of each class are given in Table 1.

TABLE | — Mode! Parameters for the
Three-Class Example

: [Class R, Cy Ay
- 1 3 4 2
2 2 3 4
3 4 7 6
: VOL. 28, NO. 3. SEPTEMBER 1981 NAVAL RESEARCH LOGISTICS QUARTERLY
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To see what g(n) looks like for a particular policy #, consider g(n,) where n, is the indi-
vidual optimum policy. From (2)

n, = (n‘,. n, n )= (3, 2, 2).

2

AR

Since n?= max (nsm) = 3 at most states 0 through 3 are required to evaluate g(#) for any 7,
m

e

e S gt am. e * wwwww

! e.L.,
“ 2
! 83,2, D=¢gm)=3 &AM (R~ (i + DC/u}
‘ i=0
' ] _ 3
1 + Y 0:7) T AnlRy = (i + DCplul
! i=0 m=2
i where the ¢,(n,), i =0, 1, 2, 3 can be obtained from the simultaneous solution of the three
: rate equations
3
‘i Y A b)) = nd i (n) ‘
m=\ ;
3 3
SAntu|o(@)= Y r,.dy7,) +ud,(n)
m=~1 m=1

3
My +p)d(R) = 3 A7) +pdi(a)

m=

“ b e

and the normalizing equation

)
Y o, (7))~ 1.

1=()

The first iteration of Howard’s {5] policy iteration algorithm yields the individually optimal
policy, n,. Because the relative values of occupying the various states (Howard’s v/s) are all set
to zero, a social optimizing customer cannot determine the effect his joining has on later arriv-
ing customers and, thus, can do no better than the individually optimal policy. Thus, the first -
iteration yields a control-limit policy with balking points n = (3, 2, 2) and the expected gain
rate associated with the policy is g = 2.486. As the policy iteration algorithm proceeds, better
and better knowledge of the v/s will result in better and better policies untii an optimal policy is
found.

T T—— —

The second iteration of Howard’s algorithm leads to another control-limit policy with
balking points n = (2, 0, 1) and an expected gain rate of g = 5.375. This policy excludes class
two from the system.

The socially optimal policy is found on the third iteration and is, of course, a control-limit
policy. The balking points are n,= (1, 0, 1) and the expected gain rate is 5.833. Again, class
two is excluded from the system. The slationary probabilities of the system occupying the vari-
ous states under the optimal policy are ¢ (7o) = (1/3, 2/3, 0, 0).

. SUMMARY

The single class of customers model of Naor is extended in this paper to several customer
classes and then solved for the individual optimum policy and the social optimum policy and
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. J associated gain rate. Both the individual and social optimum policies are shown to be control-
! limit policies. In addition, the socially optimal control limit for each class is shown to be no
}

! greater than the individually optimal control limit for the same class. The solution techniques
i are illustrated by an example.
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ON QUEUES WITH DEPENDENT INTERARRIVAL
AND SERVICE TIMES
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ABSTRACT

An M/G/1 queucing system is studied in which the service lime required
by a customer is dependent on the interarrival time between his arrival and
that of s predecessor.  Assuming the two variables are "associated.” we prove
that the expected delay in this sysiem is less than or equal to that of a conven-
tional M/G/1 gueue This conclusion has been verificd via simulation by
Mitcheit and Paulson [9] for a special class of dependent A/ M/ queue. Their
model is @ special case of 1he one we consider here. We also study another
modified 1/ G/1 queue. where the arrival process and/or (he Service process
are individually "associated ©

1. INTRODUCTION

The converiional GI/G/1 queueing model considered in most papers in the literature
assumes that itic sequences of interarrival times and service times are i.i.d. (independent and
identically distributed) random variables. However, the independence assumption may not be
realistic for many real world problems. The purpose of this note is to investigate the effect on
average delay (queueing time only) of customers in systems whose interarrival and service
times are associated, a concept of positive dependence developed by Esary, Proschan and
Walkup [6].

In a recent paper, Mitchell and Paulson [9] studied via simulation an M/M/1 queue with
the modification that a customer’s service time and the interarrival time between his arrival and
that of his predecessor are positively correlated random variables having a bivariate exponential
distribution. Their simulation results indicate that this type of dependency reduces the mean
waiting time of customers as compared to the usual M/M/1 queue. Some related results also
appeared in Conolly [2), Conolly and Hadidi {3, 4]. Motivated by Mitchell and Paulson’s simu-
lation results, we shall show here in Section 3 that their conclusion can be proven analytically
under weaker conditions. In Section 2, we briefly summarize the useful concept of association
of random variables. Another variant of GI/G/1 queues with dependent interarrival times or
service times will also be discussed in Section 4.

2. ASSOCIATION OF RANDOM VARIABLES

The concept of association of random variables was developed by Esary, Proschan and
Walkup [6]. It is a very useful tool in the study of reliability systems (see Barlow and Proschan
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{1l, Esary and Proschan [5]), queueing systems (see Niu [10]), and simulation (see Heidel-
berger and Iglehart {7]).

DEFINITION 1: Random variables X = (X, ..., X,) are called associated if cov
[£(X), g(X)] > 0 for all pairs of nondecreasing functions fand g.

The following is a partial list of properties enjoyed by associated random variables:

(P1): The set consisting of a single random variable is associated.
(P2): Nondecreasing functions of associated random variables are associated.
(P3): Any subset of associated random variables are associated.

(P4):If two sets of associated random variables are independent of each other, then their
union is a set of associated random variables.

(PS): A set of independent random variables are associated.
The last property, PS, is a direct consequence of P1 and P4. As an illustration, we will

next show that the bivariate exponential distribution discussed in Mitchell and Paulson [9] is
generated from a pair of associated random variables. Consider the random vector (X, V)

defined by

N N
x. N={y x. ¥ rl

where X,, i= 1, 2, ..., are i.i.d. random variables, Y,, i= 1, 2, ..., are i.id. random vari-
ables, and N is an integer-valued positive random variable.

PROPOSITION 1: (X, Y) is associated.

PROOF: Let fand g be an arbitrary pair of nondecreasing functions. Conditioning on
N = n, we have

cov [/ (X, Y), g(X, N}
g i X, i Y,IIN - n“
IS i=

+ c:ov{f’[/[_ii X. é Y,llN = nl,

Now, given N = pn, the vector (X,, ..., X,, Yy, ..., V) isa collectlon of independent

random variables and hence is associated (by P5). By P2, this implies 2 X, z Y,| is associ-

=} -}

- Elcov H)_‘_ x. 3 y,’. ,z[z X. 3 Y,llN- n

ated. Therefore, the first term above is nonnegative. The conclusion of the proposition then
i|N = n| are

follows by observing that both El T X, Y Y,llN - nl and Elglz X. LV

1l =) i= =\

nondecreasing functions of »n.
casing functions Q.E.D.
NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. 3, SEPTEMBER 1981




IR

had

k.

o

n‘_":‘.t I B SR YN

)

‘e

-

s

QUEUES WITH DEPENDENT INTERARRIVAL AND SERVICE TIMES 499

REMARK: When both X,, i=1,2, ...,and Y,, i=1, 2, ..., have exponential distri-
butions and N is geometric, then (X, Y) has the bivariate exponential distribution described in

[91.

3. AN M/G/1 QUEUE WITH DEPENDENT ARRIVAL AND SERVICE

Consider the following model of a single server queue with infinite waiting room. Denote
by T, the interarrival time between customers C, and C,,, with E(T,) = 1/A. Let S, be the
service time of customer C, with E(S,) = 1/u and A/p < 1. We assume (7,, S,.)).
n=20,1, ...,is a sequence of i.i.d. random vectors and (T,, S,,,) is associated for each n. It
should be noted that this model includes both the conventional G//G/1 queue (where T, and
S, ., are independent) and the M/M/1 queue considered by Mitchell and Paulson [9] by letting
(T,. S,+) to have their bivariate exponential distribution (see remark after Proposition 1).

Denoting the delay of customer C, by D,. it is well-known that
(D D,.,= max[0, D, + S, - T,
or equivalently,
(2) D,,,—A4,=D,+S5,-T,,

where 4, = — min (0, D, + S, — T,]. We will assume that the first customer arrives at time 0
and the system is initially empty. i.e., D, = 0. The following key lemma will be needed:

LEMMA 1: covI[D,. §,) < Oforalln 2 1.

PROOF: The assertion is clearly true for n = 1 since Dy = 0. Forn 2 2, (T, S,) is.

by assumption, associated and independent of —(D,_,+ §,-)). Therefore,
(-D,.,— S,.1. T,... S,) is associated by P4. Observe that —D, and S, are nondecreasing
functions of (-=D,_, - S, .\, T, . S,). Hence, by P2, (-D,, §,) is associated and conse-

quently cov [D,. §,]1 £ 0. Q.E.D.

Now, squaring both sides of (2) and taking expectations, we have
(3) E(DL)) + E(AD)=E(DY) + E(S, - T) +2E(D,S,) — 2E(D,T,),

where we have used the fact that D,., 4, = 0. Letting » go to infinity in (3), we can cancel
E(D}.,) and E(D?) from both sides assuming they are finite. Since D, and 7, are indepen-
dent and, by Lemma 1, cov [D,, S,1 = E(D,S,) — E(D,) E(S,) £ 0, the right-hand-side of
(3) is less than or equal to

E(S, - T,)2+2E(D,) E(S,) — 2E(D,) E(T,).
Noting that E(T, — §,) = E(4,), (3) simplifies to
E(T,- S,)° E(4)

< -
@ ED) S sET =5y~ TE4y

We are now ready for the main result in this section.

THEOREM 1: If the arrival process is Poisson and the system is in equilibrium. then

VOL. 28. NO. 3, SEPTEMBER 1981

NAVAL RESEARCH LOGISTICS QUARTERLY

€ 0




500 S.NIU

(5) E(D,) € AESD
"= 21~ NE(S))’

where the right-hand-side term is the expected delay of a conventional M/ G/ queue.

PROOF: Note that (4,4, > 0) is the idle period ended by the arrival of customer C,.,.
Therefore, by the memoryless property of exponential distributions, (4,14, > 0) is also
exponential with rate A. Hence,

E(4) E(A2l4, > 0) - P{4, > 0)
TE(4)  2E(4,iA4, > 0) - P{4, > 0]
E(A2lA4, > 0)

T 2E4,14, > 0)

/A

and from which (5) follows. Q.E.D.

For arrival processes other than Poisson, the analysis of (4) becomes more difficult
because we do not know the distribution of (4,14, > 0). However, various bounds for it may
be obtained by considering special classes of arrival processes (see Marshall [8]). We shall not
pursue this further here except for mentioning that all upper bounds for expected delay in spe-
cial classes of G//G/1 queues obtained by Marshall [8] can also be applied to our modified
GI/G/1 queues.

4. SOME RELATED RESULTS

In this section, we will consider another modification of GI/G/1 queues which is different
from the one discussed in Section 3. We shall assume that the sequences of service times and
interarrival times, {S,, n 2 1} and {T,, n > 1), are identically distributed and associated, i.e.,
(S, S5, .... S,) and (T, T,, ...,T,) are associated vectors for all n = 1. Of course, this is
again a generalization of the conventional GI/G/1 queue because independent random vari-
ables are associated. Now, it is easy to see that

n-1
D,,- max 0. s,,._l - T,,-]. ey Z (s/" T,) .
i=1

Hence, (D,, S,) and (D,, —T,) are associated vectors for all n 2 1. It follows that
E(D,S,)) 2> E(D,) E(S,) and E(D,T,) < E(D,) E(T,). An argument similar to Section 3
will then lead to

E(T, - S)? E(A4)

2E(T, - S,) 2E(A4)°

(6) E(D,) 2

Again, the second term on the right-hand-side of (6) is difficult to analyze. However, we
have

THEOREM 2: If {T,. n 2 1} are i.i.d. exponential random variables, i.e., the arrival pro-
cess is Poisson, then, under stationary conditions, we have

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. 3, SEPTEMBER 1981
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ED) > — A ES)H
T 201 = NE(S))

In other words, associated service times in an M/G/1 queue tend 1o increase the expected
delay of a customer. This is a somewhat expected result.

When {T,, n > 1} is a renewal process (not necessarily Poisson), lower bounds for
E(D,) may be found through (6) for several special classes of interarrival times as in Marshall
{8]. As a final remark, we note that the departure process of a conventional G//D/} queue
(the service times are deterministic) is an associated process. So, (6) may be used to find a

lower bound for the expected delay of a subsequent station.
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- ON THE OPTIMAL ALLOCATION OF CREWMEN
ABOARD A WARSHIP

J.K. Zuidweg and J. van Dam

Koninklijk instituut voor de marine
(Raval Netherlands Naval College)
Den Helder, the Netherlands

ABSTRACT

o e h o

in the temporarily isolated situation in which a warship finds itself during a
mission, not only spare parts. but also "spare” crewmen in various categories of
specialization must be on board.

Mathematical models for the probabilities of mission survival for personnet and
for personnel and materiel jointly are proposed. A practical example is worked
] out: the optimal allocation of spare crewmen to different categories of speciali-
-1 zation is calculated.

NI Y v I

1 1. INTRODUCTION

In relation to a system on board a warship (weapons, communications etc.) a meaningful
' figure of merit is the mission reliability, defined as: "the probability that the system will operate
in the mode for which it was designed for the duration of the mission" {1]. Loosely described it
is the probability that at the end of the planned mission the system is still in operation in an

acceptable manner.

Most of the equipment on board, apart from normal control, needs service, checkup,
adjustments, - replacement of failing units, and other forms of maintenance and short-term
repair during the mission. In terms of reliability theory, materiel and personnel are "in series™
the unavailability of one invalidates the other. The mission reliability of a system on board is
the joint probability that at the end of the mission the system is still in an operable state or on
short term repairable while at the same time at least the minimal human attendance is on hand.

R P

DHY

~
¢

By way of precaution against nonoperation of an entire system as a result of failure of a
vital part, spare parts are taken along. This is one of the possible forms of materiel redun-
dancy. On the effect of materiel redundancy on the reliability, a reasonably well-developed
theory is available [3]. In [4], the composition of optimal spare-part kits is dealt with. Such a
kit, of all Kkits of the same cost , guarantees the highest reliability of the system that it pertains

to.

x4

In the situation of temporary isolation in which a warship finds itself during a mission,
there are no easy means to replace operators and maintenance men who have become "hors de
. : combat.” Aboard a modern and automated warship, a growing percentage of the crew is highly
specialized and classified in a considerable variety of specializations, which makes it increasingly

Yo %

Y
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difficult for one 1o stand in for any other outside his own category. This leads to the necessity
for a relatively large number of "spare” crewmen in "expensive" categories to be taken along.
As a result of this personnel redundancy it may be found that a high degree of automation does
not automatically yield the savings in personnel costs that are generally expected.

In view of these tendencies a modern management demands, within operational and
financial constraints, a careful optimization in the spending of funds on "spares,” where materiel
and personnel aspects are not separable. This paper is primarily intended to be a contribution
to the development of methods for the modeling and solution of this optimization problem.
Related problems were treated in [S).

2. A MATHEMATICAL MODEL FOR THE SURVIVAL OF CREWMEN

In this section we introduce a mathematical model for the probability for crewmen to sur-
vive a mission.

The key parameter in this model is the expected number of hits, « that the ships incurs
during the mission. This number is assumed to be an integer-valued Poisson-distributed ran-
dom variable with mean g, so

2.1) P(1) = exp(~g) - f—,’.

The probability for one particular crewman to survive a hit is p. In consequence, the pro-
bability for him 1o survive 1 hits is p', and the probability r that he survives the mission is

(2.2) r= i p'P1) = ;exp(—g) . -SE:—ZL =explp ~ g

1=0

If A and B are two particular crewmen, then at each hit, their survivals are assumed to be
independent events. This implies that the probability that both 4 and B survive ¢ hits is p?,
and the probability r(2/2) that both of them survive the mission is

(2.3) rQ/2) = 3 5 P() = ¥ exp(~g) - l,%’— = exp (p? — ).
=0 1=0 .
Because of their common dependence on 1, the survivals of the mission by 4 and by B are no
independent events. A useful measure of interdependence is the (pairwise) correlation
coefficient C,,,, which is defined in the following way. Consider the two random variables x,
and xgz, where x, = 1 if A survives the mission and x, = 0 if he does not, while xz is defined
similarly. We now put
def cov {x,, xp)

(2.4 Ceorr =
) Jvar (x,) - var (xg)

E(XJX”) - E(X4) . E(XH)
E{x]) - Ei(x,)

(2.5)

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. 3, SEPTEMBER 1981
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which is found to be

expl(p’— g —exp2(p — 1)g
explp — g —exp2(p— g’

If I{p — gl << 1, we can use the approximations

(2.6) Cior =

Q.7 Coy =1~ p=—101

(2.8) p=1-Copandg~ L

corr
If g and p are varied while (1 — p)g and thus r remain constant, the extreme cases are
g=-—Inr and p=0: then C,, = 1|
g — o and p — 1: then C,,, = 0.

For calculations in the latter (uncorrelated) case, the following property is useful

2.9 exp(p'— g —expilp— Dg=1r'fori=2 3, ....

3. A MATHEMATICAL MODEL FOR THE MISSION RELIABILITY
OF A MANNED SYSTEM

For the case where materiel and personnel are "in series,” we propose an extension of the
mathematical model of the previous section as will be demonstrated by the following example.

We are dealing with a system that must be manned by a crew of minimally z At the
beginning of the mission, n crewmen qualified to operate/maintain the system are on board.
During the mission, the ship incurs r hits where ¢ is integer-valued Poisson-distributed with
mean g At each hit, an individual has a probability of survival p, while the materiel of the sys-
tem has a probability of survival a.

Given the number of hits, 1, the probability that a sufficient number of crew survives is
(see appendix):

mon-: " n — z
(3.0 DS

w={)

z p(:+nll
2zt u

while the probability that the materiel survives is
3.2) a.
Hence, the probability that the materiel as well as enough personnel survive ! hits is

[ " n — z
(3.3) A3 o

=0

z
z+u

(apzﬂl)r-

The mission reliability R,, of the system, which is the probability that the materiel as well
as enough crew survive the mission, is obtained by multiplying (3.3) by P(1) and summing
with respect to . The result is
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(3.4) Ry = l: T -1y

u=Q

n—
u

2z
2+t u

exp (ap:+u - l)g

In the uncorrelated case, by invoking (2.9), we obtain for the mission reliability

n n-: -
(3.5) R, = 'Z] 3 (—l)"[" .

where r, @s the probability that an individual survives the mission and r, is the probability that
the materiel survives the mission.

2
2 ot

r
z4u 7

A Practical Example

With z = | we have for n = 1, 2, 3, respectively. in the correlated case
R, =explap — g
R, =2explap — g — explap’ — g
R, = 3explap ~ g — 3 exp(ap’ — 1)g + exp(ap’ ~ 1)g

and in the uncorrelated case

R, =r,r,
R, = 2r,r, - r‘,r,,2
R, = 3r,r, = 3r,0} + 1,1,

We vary pand gin such a way that a
{p — 1)g = constant = —0.0305
keeping
a=p

which means that the probability of mission survival for an individual as well as for the materie!
is fixed at

r, = r, = 0970

In Figure 1 we plot 1 — R,, as a function of p. In order to show the influence of the vul-
nerability of the materiel, we also plot 1 — R, which is the probability that enough crewmen
survive the mission, regardiess of materiel survival. The quantity R, derived from R,, by put-
tinga=1lorr, =1,

In Table | we list | — R, and 1 — R,, as functions of n in the uncorrelated case. For
n—o wehavel - R,—0and 1 - R,, — 1~ 1,
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.

4 @ 1-Rap for n=l
@ idem for n=2
(3) idem for n=3
@® 1-Rp for n=1; also 1-Ryp for n—~o
(® 1-Rp for n=2
] (6) idem for n=3

/

— &£

g = ‘T4
‘ = (& - =

A Qs N\

<
| RPN |
@

\
W— ————
0 0.5 08 09 095 098 099 0995 0998 0,999

—— p

: ‘:1.‘.?. P RIS

FIGuRe [. 1 - R, and 1 — R,, as functions of p.

TABLE 1. Probabilities of Survival
in the Uncorrelated Case

1-R, | 1 =R,
in % in %
n=1 3.00 591
n=72 0.0900 3.09
. n=3 0.00270 3.00
n—oo | 0 3.00
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.—L——-‘ e ’.

4. THE MISSION RELIABILITY OF A SYSTEM COMPOSED OF TWO SUBSYSTEMS

We consider a system § composed of two subsystems §; and S,. For the
operation/ maintenance of S, crewmembers are on board in two categories, 1 and 2. Crewmen
in category 1 are competent to operate/maintain S, (but not §,), while crewmen in category 2
‘ are competent to operate/maintain S, ( but not S;). § cannot be in operation unless z, crew-
' men in category | and z, in category 2 are on hand. Al the beginning of the mission there are 1
n, crewmen on board in category 1 and n; in category 2. The ship incurs f hits, where 1is an
integer-valued Poisson-distributed random variable with mean g. At each hit, the probability of
survival of an individual is p, while the probability of survival of the materiel of S, and S, is a,

and a», respectively.

et

P

The probability that after ¢ hits the materiel of subsysiem S, survives, along with a

wdiddi

e easila

u,-O i 1

- For S, a similar expression can be written. After multiplying the two expressions we obtain the
T following expression for the probability that the materiel of both subsystems, along with

enough crew, survives ¢ hits

(4.2) l H"] S
‘ u.-l) Z + u;

ny—o z|+:z+u|+uz)’
(ayayp .

m =z "

2 ( l)“l+“

uy=0

Uy

— et Lanlt

4!

2y

) 23 + U, u;

By multiplying this by P (1) and summing with respect to 1, we obtain the mission reliabil-

-
- q ity
o8
T L) R ny— Zyf "o 24 ny— 2>
. (4.3) l ' ’ ] (=" ==
% "l'“ 2y + Uy u ,g() 2a + u, u;
ke J exp (ayap” 7T~ D
A
é’ In the uncorrelated case this changes into
4]
. ( ln'l [”’I "y n - z‘l R vt
4.4) (-1
- (ll’ u,-n Zy + uy Uy uz-()
- - 23
N | PR IytIvtng
b“ 2> + 7)) u l rulru r,'

where r, and s, are the probabilities that the materiel of S, and S, respectively, survives the

4 mission. The probability, R,, that enough crew survives the mission to operate/maintain the
two subsystems, irrespective of materiel survival, can be derived from R,, by putting in (4.3):

a;=a;=1and in (44): Fay ™ Fay™ 1. |

AT

NAVAL RESEARCH LOGISTICS QUARTERLY VOL. 28, NO. 3, SEPTEMBER 1981}




e G A e e s e i Y
. - )

OPTIMAL ALLOCATION OF CREWMEN ABOARD A WARSHIP 509

For the probability R, that the materiel of both subsystems survives the mission, we have
in the correlated case

4.5) R, =explaa,— 1)g

which can be derived in the same fashion as (2.3), and which in the uncorrelated case changes
into

(4.6) R,=r,1,.

S. SOME NUMERICAL RESULTS

The quantities R,, R,, and R, as dealt with in the preceding section were calculated for
the case where
2 = 8 and 2y = 1
while g, p, n; and n, were varied; a, and a, were varied along with p such that always

a=da>=p.

As p was varied, g was varied at the same time, keeping

{p — g = constant.

Three runs were made, with

(p — g =1n0.990, in 0.970 and in 0.900,

respectively.

Samples of the numerical results are given in Tables 2, 3, 4 and 5, and in Figures 2 and 3.
In Tables 2 and 3 we list 1 — R, and 1 — R,,, respectively, as functions of (n), n)), as ;
obtained at the second run, in the uncorrelated case. In Tables 4 and S we do the same for the :
case where p = 0.700. In Figure 2 we plot 1 — R, as a function of p for several pairs of values
of (n, ny), again as obtained at the second run. The corresponding plots of 1 — R,, and

| - R, are given in Figure 3.

Tables like 2. 3, 4 and 5 can be used for the determination of optimal sequences of alloca-
tion. Let us suppose that the cost per crewman per mission is k, for a man in category | and
k, for a man in category 2. Let us further suppose that we can afford to spend an amount K on

é the crew in the two categories. This means that we have to choose n, and n, under the restric-
tion that

g (51) "]k] + ngkz < K.

4

; For every value of K, it is easy to find a pair of values (n, n,) such that under the res-
i triction (5.1), the lowest value of 1 — R, or 1 — R, is obtained. By doing this for increasing
B values of K, the optimal sequence of allocation is established.

»
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J TABLE 2. 1 — R, in % as a function of (n,, ny), for
] (p — g =~In 0970 and p —1.
1}
i n 1 2 3 4
~ n
f 8 (| 240 | 21.7 21.6 21.6
! 9 573 2.90 2.82 2.82
10 3.27 0.366 0.279 0.2717
I 3.02 0.113 0.0253 0.0226
12 3.00 0.0916 0.00432 0.00169 3
13 3.00 0.0900 0.00280 0.185 x 10— 1
j
i
TABLE 3. 1 — R, in % as a function of ’
(ny, ny) for (p — 1)g =1n0.970 and p — 1.
n 1 2 3 4
n
8 || 28.5 26.3 26.3 26.3
91113 8.64 8.56 8.56 )
10 8.99 6.25 6.17 6.17

11 875 | 6.02 5.93 5.93
12 ¢ 873 6.00 | 5.91 5.9]
13 8.73 599 1 591 5.91
14 4 873 5.99 5.91 5.91

TABLE 4. | — R, in % as a function of (ny, ny),
Jor (p -~ DNg=In0970 and p = 0.7.

na i 2 3 4

81928 19171 9.14 | 9.13
911839 | 801} 79 | 7386
10 {| 719 | 6.44 | 6.22 | 6.15
11 ]} 597 | 487 | 453 | 443
12 11497 | 3.55 ] 3.12 | 299
13 11423 | 260 { 2.10 1.95
14 1 3.75 | 1.96 | 1.41 1.24
15 1§ 3.45 | 1.56 | 0.985 | 0.806
16 || 3.27 | 1.33 | 0.728 { 0.542
17 § 3.16 | 1.19 | 0.576 | 0.385
18 {{ 3.10 | 1.10 { 0.485 | 0.290
19 §1 3.05 | 1.02 | 0.394 | 0.195

ny
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TABLE 5. 1 — R, in % as a function of (ny, n,),
Jor(p — g =1In 0970 and p = 0.7.

o 2 3 4

8119.47 [9.4219.40 | 9.40
911904 | 885 | 8.80 | 8.78
10 |{ 845 | 8.09 | 798 | 7.94
11 4786 } 73217151710
12 1 7.37 | 6.68 | 647 | 6.41
13  7.01 | 6.22 | 598 | 591
14 1 678 | 592 | 5.65 | 5.57
1S }) 6.64 | 573 | 545 | 5.37
16 § 6.56 | 5.62 ) 534 | 5.25
17 {{ 6.51 | 5.56 | 5.27 | 5.18

n

16 j
15+ Z _ i
14 (8.,1)
13+ / -
12
e N ~
° 10
€ —Je _ i
o 8 [T\
I ~N@E.2 ]
_ ;
SN
51 \ i
z 133 [\ —
N
1&— \ \ —

o

0.5 08 09 09 098 099 093 0998 0.999
— p

FIGURE 2. ] ~ R, vs. p for several values of (n). ny), for (p - 1) g = In 0.970
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Results are depicted in Figures 4 and 5, which show allocation sequences optimizing
1— R, and | — R,,, respectively. In both of these figures, the black dots refer to the situation
where

ky = k;
whereas the open dots apply to the situation where
ki ky=1:2

In the former case the sequence is discontinued after the first step where 1 — R, or
I — R,, is reduced by less than 0.5%; in the latter case the sequence is continued up to the
same final value.

The effect of the first four optimal allocation steps (that is to say, optimal for the case
k; = k,) on the numerical values of | — R, and 1 — R,, is shown in Tables 6 and 7, respec-
tively. The parameters in these tables are the same as in Figures 4 and 5. In Table 7 we also
give the limit values 1 — R, of 1 — R,, as n; and n, approach infinity.
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{p-1)g=1In 0.990 (p-1)g=1n 0.970 (p-11g=in 0900
4
: ; ;Xf‘l
p = 0.700 2 2
o, i __M_S:*—A Vel N,
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4

p:0.970
PO I

8 9100 8 910 1112 8 910 1112 13 14

p = 0.997

-
fl;i

8 910 8 9101 8 91011213

"
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FIGURE 4. Aliocation sequences optimizing R,
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FIGURE 5. Allocation sequences optimizing R,
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TABLE 6. | — R, in % as a Function of la), n;). Allocation
Steps Optimal With Respect to n; + n».

i

' {(p— g =1n0.99%lI(p~ g =1n0970}}{p — 1)g = In 0.900
o)) JU=R, [y e } V=R, T (. ) | 1 -R,

-

f B | 316 8.1 9.28 (8.1 | 286
9.1 | 285 (9.1 8.39 o0 | 262

p=~0700{ (10,1) | 2.43 aoy | 719 | aon | 229

a1y {200 arh | oser | arn | o19s

1.2 | 16l aty | 487 | ary | v

®n | 112 ®.0 | 216 B0 | 569

O.n | 210 9.) 125 9.1 | 304

p=0970 Y (a0 | tie aon | 3% I aon | 180

(02) | 0204 | 002 | 114 | (102 | 104

(112 {00629 | (11,22 | 0382} (11D amn

.1 | 855 @0 | 237 8.0 | 608

O.1) | 143 9.1 5.90 .1 | 303

p=0971 92 | 0447 9.2) 300 | a0 | 165
(102 | 00346 | (10.) | 0442 || (10.2) 8.23
aLy {oowdo || Gry | o33 | a1 3.03

@0 | 865 @.0 | 230 @®.0 | 613

o | 134 9.1) 5.73 o.n | 303

P 9.2) | 0354 9,2) 290 | ao.y | 163

(10,2) 0.0214 (10,2 0.366 (10.2) 7.95
(11.2) 0.0103 11.2) 0113 (11,2) 2.83

TABLE 7. 1 — R, in % as a Function of (ny, n>); Allocation
Steps Optimal With Respect to # + »n>.

-~

(p—1g=1n0990 |j{p ~ Ng=In0970 I {p — 1)g = in 0.900
(ny, nd [1~R, W ln o)) [ TR, [ (ny. m) { 1R,

(8.1 323 (8,1) 9.47 8,1 2.1

9.1 3.08 9.hH 9.04 “.n 279

p=0700 4 0D 2.87 (1o.n 8.45 190.1) 26.3
arh 2.66 (aLn 7.86 atn 247

(11,2) 247 (1.2) 7.32 (11,2) 233

(00, o) 1.69 (o0, o0) 3.08 (o0, ) 164

(8.1) 9.10 (8.1 251 &1 63.2

(5.1 3.89 “.n 12.2 9.1) 41.8

p=10970 | (0. 3.02 (10.1) 9.25 ao.h 322
(16.2) 2.14 10,2} 680 (10.2) 264
(11,2) 2.02 (11,2 6.15 1.2) 22.1
(o0, o0) 1.96 (o0, o0} 5.82 (o0, o) 18.7

(8,1) 10.3 8.1 28.1 8,1 68.1
9.h 3.38 9.hH 14 (CR)] 433
r = 0.997 9,2) 242 9.2) 8.79 (10,1) 322

10.2) 2.02 (10.2) 6.31 (10.2) 256
(1.2 2.00 (L2 6.03 (11.2) 214
(00, o0} 1.99 (00, &) $.90 (00, 00) 19.0

8.1 10.5 3.0 28.5 (8.1 68.6
9.1) 3.30 (LAY 1.3 (CRY 438
p—1 9,2) 2.3 9.2) 8.64 (1o.1H) 322
(10,2) 2.01 (10,2 6.25 (10,2) 25.4

.2y 2.00 (11,2 6.02 a2 213
(oo, oo) {.99 {00, o) 5.91 {00, o0} 19.0
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SOME OBSERVATIONS ON THE RESULTS:

i 1. Comparing situations where p is equa) to or close 10 1 (so C,,,, = 0) with situations

‘, where p is smaller (so C,, is larger), we find that in the former case the mission
. reliability with (n), n,) = (8, 1) is smaller, but the addition of spare crewmen is
more effectual.

2. Comparing the optimal allocation sequences in the various cases, we find that these
sequences are not too strongly dependent on p, g, a,a; or ko/k,. In all cases nl/n,
tends to become smaller than z,/z;. In other words we recognize a tendency to allo- 3
cate a relatively large portion of the spares to the smaller number.

[Py SN

3. Comparing the allocation sequences for a particular value of p, while In (p — l)g is
varied, we recognize the tendency of n;/n, to approach 2,/z; as exp (p — llg
decreases: if the risk of the mission increases, the extra allocations go primarily to
the larger number.

Ketes.

oo L bad

4. There is a significant difference between spare parts in a spare part kit and "spare”
- crewmen aboard a warship. Only parts in active state can fail, whereas parts in
! storage ("cold standby") will not get out of order. A "spare” crewman, on the other
hand, is vulnerable as soon as the mission is begun (in terms of reliability theory, he

ol is in "hot standby"). Despite this difference, however, the results obtained here are
in accordance with the rules which were found to apply to optimal spare part kits [4].

. N e

5. Comparing R, with R,, under the same circumstances, we find that the addition of

spare crewmen has less effect on R,, than on R,. Since the difference between R,

38 and R, is caused by the vulnerability of the materiel, this illustrates that the addition

. of spare crewmen in less effectual as the materiel is more vuinerable. Results like

" the ones we have obtained here could be useful for making the choice between { 1

spending available funds on spare crew or on improving the mission reliability of the
equipment.

[ S

6. CONCLUDING REMARKS

In this paper, mathematical models for the mission reliabilities of personnel, and person-
nel and materiel jointly, were presented. An example was worked out, where the optimal allo-
cation of crewmen in different categories of specialization was calculated. Despite its simplicity,
this example is indicative of the results that can be obtained by application of the same tech-
niques to more complex configurations.

Ly

o TR
J.;.:.‘f-..n..w ae m

From our calculations we have learned that the mission reliability of a manned system not
2 only depends on the probabilities of survival of individual crewmen and separate pieces of

equipment, but equally on the correlations between survivals. This implies that efforts must be
made to gain insight into the statistical characteristics of risks that personnel and equipment are

-

‘il exposed to during a mission.
)
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APPENDIX
Consider n possible events ¢;, ¢,, ... ., e, which are symmetrical in the sense that
(A.la) P(e)) = P(es) = ....= Ple,)
(A.1b) P(eie,) = P(ee;) = ....= P(e, , ¢,)
(A.lc) P(e,eze‘.) = P(?]?g?;) = ... = P((’,, 2 €, (’,,)

Then the following property is known [2]. The probability P(= 2z, n) that at least z evenis
happen is

(A.2) Pz m=|1F 0" | 2 nc+w
. /‘.n—:”gb u |73 mletu
where w(z + u) is the probability that ¢, e;, ...., e.,, all happen, irrespective of whether
the others happen or not.
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STOCHASTIC DUELS WITH DISPLACEMENTS (SUPPRESSION)*

G. Trevor Williams

Department of Statistics
University of Bristol
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ABSTRACT

The stochastic duel is extended to inciude the possibility of a near-miss on
each round fired, which causes the opponent 1o displace. During displacement,
the displacing contestant cannot return the fire but is still a target for his op-
ponent. An alternative interpretation of this model is to consider the displace-
ment time as the time a contestant’s fire is suppressed by his opponent’s fire
and that he does not move, but merely ceases fire lemporarily. All times are
exponentially distributed. ]

1. INTRODUCTION

This paper continues the development of the Theory of Stochastic Duels. Although com-
bat is a very complex process, microscopic models of this type help to develop important
insights into the more complex processes and are also useful in weapons systems analyses, A
among other things.

Some earlier work has considered mobility by incorporating varying projectile time-of-
flight, see Ancker [2] and Jaiswal and Bhashyam (5], or by varying hit probability, see Williams
{8] and Bhashyam and Singh [4] and Ancker [1]. Some very simple models, where the contes-
tants displace, are provided in Ancker and Williams [3] and Schoderbeck [6] and [7]). In this
paper we consider a more general situation of the latter type.

In general, most earlier studies of stochastic duels have not considered an interaction
between the two contestants, 4 and B. That is to say, the same results would have been
effected if each fired separately at his own target in two different localities and they subse-
quently compared their times to score a kill, having previously agreed that the quicker of the
two would be the winner. We shall now consider a duel where A’s behavior is contingent upon
A B’s, and vice versa,

§ M AN AP OV Y A

*This study was partially supported by the Deparimem of the Army, U.S. Army TRADOC Sysiems Analysis Activity,
White Sands Missile Range, New Mexico.
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2. THE MODEL

We assume, as usual, that both duelists begin to load and fire simultaneously, but we now
add the possibility that one or the other may score a near-miss, the effect of which on a duelist
is to make him move to a new firing position. We may imagine that if he did not move, he
would immediately be killed, since his opponent has now gotten his range. During his displace-
ment time, he is subject to fire from his opponent but cannot return it. We assume that the
probabilities of a near-miss and a kill are the same from round to round, and that once a duelist
has displaced because of a near-miss, he proceeds to load and fire as before. His displacement
and firing times are random variables whose probability density functions are known and are
not necessarily the same.

An alternate interpretation that may be useful is as follows: Upon receiving a near-miss,
the duelist merely seeks cover in his present position and ceases fire for a period of time equal
to the corresponding displacement time, i.e., merely interpret displacement time as fire-
suppression time, and the model is a fire-suppression model as it stands.

3. ANALYSIS

Our first step is to eliminate from consideration all complete misses on both sides. We
are thus left with a series of near-misses that form, so to speak, a succession of turning points
on which the duel hinges. It does not matter which of the duelists scores a near-miss, since it
still interrupts the course of the duel. We thus make a list of when the near-misses occurred
and who scored them. Ultimately, the duel ends on a near-miss which was actually a kill.

We introduce the following notation. Let
Paa = the conditional probability that A scores the
next near-miss, given that 4 scored the last one,

(1
Pea = the conditional probability that B scores the

next near-miss, given that A scored the last one,
and similarly for p,p and pgg. Then, we plainly have
2 Paa + Pea = Pag + Pos = |.

Next, let
P4 = the unconditional probability that 4 scores

Q) a near-miss on any round,

and

@ k, = the conditional probability that 4 scores
4

a kill, given a near-miss,
that is, on any near-miss, a kill may or may not have occurred, and
k4p4 = the joint probability of a near-miss and a

&) kill, or just simply a kill.
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Also, let
g4 = 1 — p, = the probability that 4 misses
(6) .
entirely on any round
and
- [y = | — k, = the conditional probability that 4 does

not score a kill, given a near-miss.

Of course, there is a similar notation for B. We may remark here, that it will be important in
some future research to allow these probabilities, i.e., (3), (4), (6) and (7), to be different in
the suppressed and nonsuppressed states.

We further let

Po4 = the probability that 4 scores the first near-miss

(8) ,
pos = the probability that B scores the first near-miss
so that
) Pos + poy =1
and we call
P,(A) = the probability that 4 kills, for the
first time, on near-miss number »
10)

P,(B) = the probability that B kills, for the
first time, on near-miss number n
Then, the probability, P(A4), that 4 wins the duel is

PL) =T P4,

n=l

(1) and, simifarly for B
P(B) =~ ¥ P,(B) .

ne=t

Also, P(4) + P(B) = 1. Clearly, when n = 1, we have
(12) P)(A) - pmkA and P|(B) - p(mkﬂ.

Now, the probability that A scored a near miss on round n — 1, but did not Kkill, is given
by
Ly )
kq
since P,_;(A) includes a factor k, for the kill on round #n — 1, which factor must be replaced
by [, if there was no kill. Thus,

Pﬂ-l(A)
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(13) P,,(A)"k; p“;—- P,,,|(A) +p4” TP,,. |(B)
4 8

provides the two near-miss situations on a given round that can lead to a kill by 4 on the next
round. Hence,

k
(14) PA) = 1,04 P, (A) + Ig puy ;‘i P, \(B),
B

and similarly,

k
(15) P,,(B)== IB PiB P,,_|(B)+l4 Ppa %P,,-[(A).
A

!
!

Summing both sides of these simultaneous difference equations, from 2 to oo, and making
use of Equations (11) and (12), we find that

k
(16) PA) — posks =1, pyy PUA) + Iy pay ;“— P(B), l
B
and
k
an P(B) — p(;BkB = IB PsB p(B) + l.; PBA k—B‘ P(A).
A

When we solve these two equations simultaneously for P(4), we obtain
ky(poikp + lgpan)
ky =y pag kg + g pag kg’

with a corresponding expression for P(B8). By using Notations (1), (2), and (7), it is easily
shown that the denominators of P(4) and P(B) are equal.

(18) P(A4) =

Now, adding the numerator of P(4) to that of P(B), we find
kikgpoy + kylgpap + ka kg pog + kg 14 Paa, E
which, by using Equations (2) and (9), is equal to
kakp + kolgpap + kply — kg ly paa.
And now, using Equation (7), this is equal to
kg + k4 lppas — kp ly Paa.
v;t(ul;:;\ =i.s lequal to the common denominator of P(4) and P(B), thus checking that P(4) +

Now, assume that A's firing time is exponentially distributed with mean 1/r, (r, is A's
rate of fire), and his displacement time is also an exponential with mean 8 ,, and similarly for
B. Then, by exactly the same reasoning as used in the fundamental duel, [9], to arrive at the
first kill, t he probability that 4 makes the first near-miss, py,, is

Pal
Pata + porg’
Also, from Notation (1),

(20 Paa = PIT, < Ty + Dg)

(19) Poa =
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SN VR

J . where

' ' T, = random variable time between A’s near-misses,
! N Tz = time between B’s near-misses, and

Dy = B’s time to displace.

This expression accounts for the fact that after A scores a near-miss, he proceeds to fire
again, whereas B must first displace and then fire. And, as we have already seen, when the
probability of the event (near-miss) is p, and the firing time is exponential with mean {/r,,
then the time 10 score a near-miss is exponentially distributed with mean 1/p,r,. Again, we
may use the solution of the fundamental due! to obtain this probability, p,,, by noting that the
characteristic function of Ty + Dy is simply the product of their individual characteristic func-
tions. Hence,

@y Pia ™= ‘2‘,:",‘, f_m

it PaTapyry du
e (p‘.(f'_‘ + iu) (PBI'B —iu) (1 - iSBu)

and, using residue theory, we have
para(l + pr 8y + pyrydy)
(parqy + pgrp) (M + pyry8y)°

(22) Py =

and similarly,

- PiT4
(pary + pyry) (1 + pgrgd )’

(23) Dan

When we substitute these results into Equation (18), we obtain, after a little algebra,
kepyra(l + pyr 8g) (1 + kyperyd,)

kapers(W + pyry8) (1 + kypyrgbdy) |
+ kypprg(1 + pprd ) ( + k,p,ry 8,;'

(24) P(4) = [

4. CONCLUSION

It is interesting to note that if k, = kg = 1, then all near-misses are really kills, and Equa-
tion (24) reduces to the solution for the fundamental duel with exponential firing times, (9],
and the same result occurs if 8, = 85 = 0 (zero displacement), as it should.

The expression in Equation (24) is unwieldy, since it contains eight parameters. If we
define
Py = pyredy,
Py=pyryd,, and
D= 53/ 5,

then Equation (24) becomes
Dk P,(D + kyPy) (1 + DP,)
k,DP,(D + kgPy) (1 + DP,) + kgPp(D + Pg) (1 + k,DP,)

which reduces the parameters to only five.

(25) P(A) =
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